
USENIX Association

Proceedings of the
4th Annual Linux Showcase & Conference,

Atlanta

Atlanta, Georgia, USA
October 10 –14, 2000

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2000 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.



The Linux BIOS

Ron Minnich, James Hendricks, Dale Webster
Advanced Computing Lab, Los Alamos National Labs

Los Alamos, New Mexico

August 15, 2000

Abstract

The Linux BIOS replaces the normal BIOS found on PCs,
Alphas, and other machines. The BIOS boot and setup
is eliminated and replaced by a very simple initialization
phase, followed by a gunzip of a Linux kernel. The Linux
kernel is then started and from there on the boot proceeds
as normal. Current measurements on two mainboards
show we can go from a machine power-off state to the
“mount root” step in a under a second, depending on the
type of hardware in the machine. The actual boot time is
difficult to measure accurately at present because it is so
small.

As the name implies, the LinuxBIOS is primarily
Linux. Linux needs a small number of patches to han-
dle uninitialized hardware: about 10 lines of patches so
far. Other than that it is an off-the-shelf 2.3.99-pre5 ker-
nel. The LinuxBIOS startup code is about 500 lines of
assembly and 1500 lines of C.

The Linux BIOS can boot other kernels; it can use the
LOBOS(ref) or bootimg(ref) tools for this purpose. Be-
cause we are using Linux the boot mechanism can be very
flexible. We can boot over standard Ethernet, or over other
interconnects such as Myrinet, Quadrix, or Scaleable Co-
herent Interface. We can use SSH connections to load the
kernel, or use InterMezzo or NFS. Using a real operating
system to boot another operating system provides much
greater flexibility than using a simple netboot program or
BIOS such as PXE.

LinuxBIOS currently boots from power-off to multi-
user login on two mainboards, the Intel L440GX+ and
the Procomm PSBT1. We are currently working with in-
dustrial partners (Dell, Compaq, SiS, and VIA) to port

the LinuxBIOS to other machines. According to one ven-
dor, weshould be able to purchase their LinuxBIOS-based
mainboards by the end of this year.

1 Introduction

Current PC and Alpha cluster nodes, as delivered, are
dependent on a vendor-supplied BIOS for booting. The
BIOS in turn relies on inherently unreliable devices –
floppy disks and hard disks – to boot the operating sys-
tem. While there has been some movement toward a net
booting standard, the basic design of the netboot as de-
fined by PXE (ref) is inherently flawed, and not usable in
a large-scale cluster environment.

Further, while the BIOS is only required to do a few
very simple things, it usually does not even do those well.
We have found BIOSes that configure all mainboard de-
vices to a single interrupt (from Compaq); BIOSes that do
not configure memory-addressable cards to page-aligned
addresses(Gateway and others); BIOSes that will not boot
without a keyboard attached to the machine (some ver-
sions of the Alpha BIOSes); BIOSes that will not boot if
the real-time-clock is invalid (Alpha BIOSes). One engi-
neer has reported to us that he had to write his own PCI
configuration code because no BIOS extant could handle
his machine’s bus structure. BIOSes also routinely zero
all main memory when they start, which makes finding
lockups in operating systems very hard, since on restart
the message buffer and the OS image is wiped out.

Another problem with BIOSes is their inability to acco-
modate non-standard hardware. For example, the Infor-
mation Sciences Institute (ISI) SLAAC1 reconfigurable

1



computing board will not work with some BIOSes be-
cause it does not configure its PCI interface quickly
enough. In some cases, on some mainboards, by the time
the BIOS is done probing the PCI bus the SLAAC1 card
is not even ready to be probed. As a result the BIOS never
finds the SLAAC1. Changing the SLAAC1 hardware is
not an option, because the speed problem is an artifact of
the FPGA that is used for the PCI interface. If we had
control over the BIOS, however, we could change it to ac-
comodate experimental boards which do not always work
with standard BIOSes.

Finally, BIOS maintenance is a nightmare. All Pentium
BIOSes are maintained via DOS programs, and configu-
ration settings for most Pentium BIOSes and all Alpha
BIOSes is via keyboard and display (and, in some truly
deranged cases, a mouse). It is completely impractical to
walk up to 1024 racked PC nodes and boot DOS on each
one in turn to change one BIOS setting. Yet this imprac-
tical method is the only one supported by vendors.

This situation is completely unacceptable for clusters
of 64, 128, or more nodes. The only practical way to
maintain a BIOS in a cluster is via the network, under
control of an operating system: BIOS configuration and
upgrade should be possible from user programs running
under an operating system. BIOS parameters should be
available via /proc.

2 Related Work

There are a number of efforts ongoing to replace the
BIOS. For the most part these efforts are aimed de-
veloping an open-source replacement for the BIOS that
supports all BIOS functions – in other words, plug-
compatible BIOS software. An end goal of most of
these efforts is to be able to boot DOS and have it
work correctly. Example projects are the OpenBIOS
(www.openbios.org) and the FreeBIOS (which can be
found at www.sourceforge.net).

Other efforts aim to build a completely open source ver-
sion of the IEEE Open Boot standard. This work will re-
quire the construction of a Forth interpreter; code to sup-
port protocol stacks such as TCP/IP; other code to support
Disk I/O and file systems on those disks; in short, many
pieces that are already available in real operating systems.
If the experience of other similar projects are any indica-

tion, this BIOS will take almost as much NVRAM as a
gzip-ed Linux kernel, while having much less capability.
As an example, the Intel BIOS for the L440GX+ main-
board takes 50% more memory (750 KB) than the Lin-
uxBIOS, and is far less capable.

Finally there is one recent effort which
is aimed at providing a commercial replace-
ment for the BIOS, called SmartFirmware
(http://www.codegen.com/SmartFirmware/index.html).
SmartFirmware is also IEEE Open Boot compliant.

While these efforts are interesting they do not address
our needs for clustering. The problem with the BIOS is
not only that it is closed-source; the problem is that it
is performing a function we no longer need (supporting
DOS), rather than functions we do need. The limited na-
ture of the BIOS was originally imposed in the days of
8 KBYTE EPROMS; now, given that the BIOS is using
most of a 1 MBYTE NVRAM, we ought to be able to do
better. The next generation of mainboard NVRAMs will
be 2 Mbytes: there is lots of room for a real operating sys-
tem on the mainboard. Finally, we need to have the option
of doing things the BIOS writers can not imagine, such as
booting over Scaleable Coherent Interface or managing
the BIOS via SSH connections.

3 Structure of the Linux BIOS

The structure of the LinuxBIOS is driven by our desire to
avoid writing new code. We want to build the absolute
minimum amount of code needed to get Linux up, and
then let Linux do the rest of the work. Linux has shown
its ability to handle quirky hardware; it is doubtful we can
do a better job than it can.

One initial concern for any PC BIOS is what mode to
run the processor in. All x86 family processors boot up
into an 8086 emulation mode, running with 16-bit ad-
dresses, operators, and operands. In other words, 1000
Mhz. Pentiums on startup are emulating a 16-bit, 6 Mhz,
near 25-year-old processor. BIOSes even now have to
take into account such unpleasant details as near and far
pointers (see the PXE standard for some examples).

Some of the new open source BIOS efforts have taken
the approach of doing a fair amount of startup in 16-
bit assembly, and at some point making a transition to
protected mode. There are three serious problems with

2



this approach. First, the 8086 emulation is guaranteed
to work for DOS, but we have seen cases where certain
instruction sequences don’t seem to work right. Emula-
tion has its limitations, and depending on it seems very
risky. Second, some hardware initialization absolutely re-
quires having access to 32-bit addresses. For example,
setting up PC-100 SDRAM requires at some point a write
to all the memory SIMMs, which are 256 Mbytes in some
cases. This addressing requires 30-bit addresses to cover
1 Gbyte of RAM. These addresses are not accessible in
16-bit mode, requiring extraordinarily difficult initializa-
tion sequences. Finally, use of 16-bit code requires use
of a 16-bit assember such as NASM or as86. Having any
assembly code is bad, but having two different kinds of
assembly code and two assemblers is unacceptable.

Our decision wat to have LinuxBIOS make a transition
to 32-bit mode immediately. The transition is actually a
fairly simple process: the processor has to load a segment
descriptor table (the so-called “global descriptor table” –
GDT) and enable memory protection. To load the GDT
the processor must execute an LGDT instruction, and sup-
ply a pointer to a table descriptor in addressable memory.
Fortunately there is no problem with having this table in
NVRAM, so moving to protected mode in the first few in-
structions is no problem. In fact the sequence takes about
10 instructions.

Once the processor is in 32-bit mode it must do basic
chipset initialization. While one might expect that chipset
initialization would require reams of assembly code, in
actuality assembly code is only needed to turn DRAM on.
Once DRAM is on, C code can be used. The advantage of
using C, besides the obvious improvement in productiv-
ity, is that non-Pentium mainboards have a lot in common
with Pentium mainboards, and in some cases even use the
same chipsets. LinuxBIOS code can be portable between
these different mainboards.

Another potential problem is that LinuxBIOS boots and
runs on hardware that is completely uninitialized. Lin-
uxBIOS can not make any assumptions about the state of
any hardware; the hardware is in an indeterminate state.
Linux, on the other hand, assumes that all hardware is
initialized by the BIOS. While most Linux hardware ini-
tialization still works with uninitialized hardware, we are
also finding that we have had to make minor changes to
the kernel. For example, Linux assumes that if an IDE
controller is not enabled, it is because the BIOS disabled

it. On uninitialized hardware, however, the IDE controller
is not enabled because there is no BIOS to enable it in the
first place. Thus, ’IDE controller not enabled’ has a dia-
metrically opposite meaning in BIOS and non-BIOS envi-
ronments. We have chosen to make the one-line change to
the Linux IDE driver to enable IDE controllers when they
are found. The change is controlled by an #ifdef LIN-
UXBIOS.

In the end, the structure we arrived at is very simple.
There are five major components: protected mode setup;
DRAM setup; transition to C; mainboard fixup; and ker-
nel unzip and jump to kernel. We cover these components
below.

3.1 Protected mode setup.

Protected mode setup is 17 assembly instructions that put
the segmentation, paging and TLB hardware in a sane
state and then turns on protected mode (segmentation, not
paging). It operates as follows:

1. First instruction, executed in 16-bit mode at address
0xffff0: jump to BIOS startup. This jump is a stan-
dard part of x86 processor reset handling.

2. Next five instructions: disable interrupts, clear the
TLB, set code and data segments registers to known
values.

3. Next instruction: load a pointer to a Global Descrip-
tor Table (GDT). The GDT is a control table for man-
aging addressing in segmented mode.

4. Next four instructions: turn on memory protection

5. Next several instructions: do remaining segment reg-
ister setup for protected mode

6. At this point, 17 instructions in, we are in protected
mode, can address 4 GB of memory, and are running
as a Pentium, not an 8086.

3.2 DRAM setup.

DRAM on current mainboards often requires some level
of configuration. SDRAM can be particularly tricky.
Since there is no working memory hardware initially, this
code is assembly. This code has proven to be the hardest

3



code to get working, consuming several weeks on each
mainboard. But as we build experience it has also gotten
easier to figure out. We resolved several L440GX+ bugs
after getting the code working on the Procomm BST1B.
This code takes 79 lines of assembly on the Intel and
280 lines of assembly on the Procomm. These numbers
will change somewhat as we plan to modify the Intel sup-
port to use the Serial Presence Detect capability on the
SDRAM.

3.3 Transition to C.

The rest of LinuxBIOS is written in C, so the next few
instructions set up the stack and call a function to do the
remaining hardware fixup.

3.4 Mainboard fixup.

Mainboard fixup involves limited hardware initialization
that we need to finish loading the kernel. In the current
implementation, this includes:

� doing whatever the mainboard requires to turn on
caching (setting up an MTRR on some processors)
so that kernel unzip runs in reasonable time. If
the MTRR is not on, the unzip stage can take one
minute. With caching on it is not easily measured.

� Making the full FLASH memory available to the
processor. Most standard chipsets come up with only
64K or 128K of the FLASH addressable. Enabling
all of FLASH requires some register manipulations,
which are different on each chipset.

� Enabling minimum device capabilities in the power
management hardware (if there is any).

We also need cover things that Linux can’t (or won’t) do.
Linux can not yet initialize a completely uninitialized PCI
bus, although it is getting close. We do the bare minimum
by setting the Base Address Registers to reasonable val-
ues, and Linux properly handles the rest of the work, such
as setting up interrupts and turning off the option ROMs.
Linux also needs the keyboard to be in some sort of rea-
sonable state, so we reset it. Finally, clock interrupts have
to be working, so we make sure these are turned on. This
last detail is mainboard-dependent to a limited extent.

Mainboard fixup is currently 330 lines of C code.

3.5 Inflate the kernel.

This is fairly standard code grabbed from the Linux ker-
nel. It has been extended in a few ways. First, parameters
from LinuxBIOS to the Linux kernel proper are handled
in this code. The parameters are copied to the standard
location for Linux kernels for the given architecture. The
command line is also copied out. Also, the standard Linux
gunzip won’t work in a ROM-based environment without
some changes. For the most part these involve declaring
initialized arrays as ’const’ so that they are placed in the
read-only text segment (i.e. FLASH) instead of RAM.
Initialized automatic and global variables must also be
changed so that they are initialized at runtime.

Once parameters (such as memory size) and cmdline
are copied out, the standard Linux kernel gunzip is called
and the kernel is unzipped to the standard location for the
architecture (0x100000 on PCs).

3.6 Jump to the kernel.

This is a simple jump instruction. We jump directly to
the start of the kernel, since much of the standard Linux
kernel setup code is not needed, including the part of the
kernel that uncompresses the rest of the kernel; that work
is done in the LinuxBIOS startup code. Instead of jump-
ing to the boot setup code as LILO does, we directly enter
the kernel in the startup_32 function.

3.7 Summary

The structure of the LinuxBIOS is simple. There is just
enough assembly to get things going, and the rest is C.
There is just enough C to get the hardware going, and the
rest is Linux. For example, we only initialize enough of
the MTRR registers (one in most cases) so that the Lin-
uxBIOS code is cached. Linux redoes MTRR initializa-
tion anyway: there is no point in doing more than the bare
minimum. We do very little PCI configuration, in fact just
enough so that Linux can do the rest. Also, LinuxBIOS is
configured at build time (somewhat as the BSD kernel is)
so that it is configured to the mainboard it is built for. The
only code in the mainboard NVRAM is the code needed
for that mainboard.

We have been told that 100% of common PC BIOS
code is assembly. If we count Linux, then something

4



like 1% of LinuxBIOS is assembly. Because so much
of the standard PC BIOS is object code, a lot of code in
the standard PC BIOS is directed to figuring out what the
hardware is. We do not have this problem, since we are
source-based.

4 Status

LinuxBIOS is currently booting from power-up on two
mainboards. The first is the Intel L440GX+, and the sec-
ond is the PROCOMM BST1B. We have just begun work
as of June on the Compaq DS10 (Alpha) and Dell 2450
(dual Pentium) mainboards. VIA is sending us a moth-
erboard based on their chipset and we expect to start that
work in July.

We generally hear two major concerns about Lin-
uxBIOS. The first is that it is going to be impossible for
us to track and support all the various mainboard chipsets
in use, which in turn will make coverage of 100% of the
mainboards impossible. The second is that less than 100%
coverage is equivalent to failure.

It is true that the first two mainboards took a lot of work
– about four months of one person for both mainboards.
Much of this work was non-recurring, as it involved work-
ing out the structure of LinuxBIOS and learning about
such things as the quirks of SDRAM and the limits of
Linux PCI initialization. We hope to have a better esti-
mate of effort involved once we have completed the next
two or three mainboards.

While it is true that we can not hope to cover every
mainboard in existence, we do not plan to. Our long-term
goal in this effort is to have the vendors pick up the porting
effort. One (SiS) is already devoting substantial person-
nel effort to supporting their new 630 chipset. Other ven-
dors are also interested, once we have developed an ini-
tial proof-of-concept for one of their mainboards. One or
two other vendors are discussing the construction of main-
boards designed from the start to run only LinuxBIOS.

The second concern is coverage. If we do not cover
100% of the mainboard market, have we failed?

We would argue that this question is ill-posed for two
reasons. First, coverage at an instant in time says nothing
about eventual coverage. In 1991, Linux and the BSD op-
erating systems initially only covered a very small frac-
tion of mainboards extant. Many argued that these sys-

tems could never succeed, since they could never support
all the hardware available. Linux and the BSDs are very
successful, and they still do not cover 100% of the main-
boards for sale.

Second, 100% coverage is not necessary for success.
If LinuxBIOS is available on a reasonably large number
of mainboards, and we can buy those boards for clus-
ters, then for our purposes we have succeeded: the mar-
ket for LinuxBIOS mainboards is economically viable,
and we can buy what we need. Our goal is not “Lin-
uxBIOS on every desktop”. Our goal is to be able to buy
LinuxBIOS-based mainboards from which to build clus-
ters and other computer systems. Economic viability in
this market doesn’t require 100% mainboard market pen-
etration.

5 Post-startup Scenarios

In this section we describe some possible uses of the
Linux BIOS once it is booted. These uses include a net-
work boot; standard boot; a diskless node boot; and main-
tenance activities. There are also some unique startup
modes that have not been tried to date for clusters. In
each case, the Linux kernel can boot another Linux kernel
using the LOBOS system call we describe in a companion
paper.

5.1 Network boot

Once the BIOS has booted Linux from NVRAM, the ker-
nel take can a number of actions. One would be to es-
tablish an SSH connection to a remote DHCP configura-
tion daemon. Using SSH represents a significant advance
over the UDP-based approach used by, e.g., bootp and
PXE. The SSH-based connection can be much more se-
cure. The SSH connection also benefits from the more sta-
ble behavior of TCP under load, as compared to a UDP-
based approach. We have seen cases where 32 nodes try
to netboot off of one server and only 20 succeed. PXE
would have severe problems in this case as the PXE stan-
dard suggests that a node only send four packets, then give
up.

The DHCP daemon can tell the node its identity and
direct it as to which kernel to boot. The DHCP server can

5



even send a kernel image over the SSH connection, and
the kernel can boot it using LOBOS.

In order for the kernel to use SSH, we need basic func-
tions that are currently buried in the various SSH client
programs. To address this problem we are building a li-
brary, based on the OpenSSH source, that will allow both
kernels and user programs to create connections to SSH
daemons and establish encrypted TCP connections. We
may also see if CIPE is useful for this purpose.

5.2 Standard boot

The DHCP daemon could send the kernel its parameters
and then tell it to continue booting. In this case, the
NVRAM kernel is the kernel of choice; no further ker-
nel loading is needed. Or the kernel could boot another
kernel off a local disk or other file system resource such
as CDROM. This standard boot is almost identical to what
is done on cluster nodes now save for two crucial differ-
ences:

1. The boot sequence is entirely under the control of a
remote node. The boot will be about as fast, but there
is much better control.

2. All existing boot sequences for cluster nodes rely
on devices with moving parts, either floppy disks,
CDROMs, or hard disks. Our LinuxBIOS-based
boot sequence relies on devices with no moving
parts, namely the NVRAM on the mainboard. If the
node is told to use a hard drive and the hard drive has
failed, the node can report the failure to the control
node. No more guessing when a cluster node won’t
come up!

5.3 Diskless node

The DHCP daemon could direct the kernel to mount file
systems via NFS (no problem since this is a full-featured
kernel), AFS, Coda, InterMezzo, or any other network file
system. The kernel could then proceed or boot a different
kernel via the network file system being used. The kernel
can also use many different transports for the network flie
system, such as MyriNet, GigaNET, and SCI. We have
worked with Peter Braam to enable InterMezzo to cache
an entire root file system, so one option is to cache the

root file system to a RAM disk. Experiments have shown
that a capable root file system can be contained in a 256
MByte RAM disk. Since InterMezzo supports fetch-on-
demand, initially only about 50 MBytes of files need to be
loaded.

5.4 Maintenance

The DHCP daemon could also direct the kernel to make
an SSH port available for remote maintenance. The node
would thus not even start /sbin/init, and would instead
wait for instructions from a remote maintenance control
program. Instructions could include changing LinuxBIOS
parameters or even writing a new test kernel to NVRAM.
The kernel could even load a new root file system or repar-
tition the local disk. This maintenance model represents a
major advance over what we have now.

Using Linux to write to the NVRAM is tricky. If the
write fails for any reason there needs to be a way to re-
cover. For now, we are depending on the BIOS recovery
NVRAM. In future, and as the on-board NVRAM grows
in size, we expect to have two kernels in the NVRAM, a
recovery kernel and a normal boot kernel. The bootstrap
code will decide which one to run. If the recovery kernel
is damaged in some way the bootstrap code can run the
recovery kernel.

Another possibility is to have the kernel open a port and
communicate using HTTP commands. We could do BIOS
maintenance with a web browser.

5.5 Netboot over Myrinet

All PC netboot standards extant (including PXE) rely on a
netboot ROM running in 16-bit mode for network packet
I/O. Needless to say this requirement greatly reduces the
number of interfaces we can use. Since LinuxBIOS boots
a true Linux kernel, we can use high performance net-
work interfaces such as Myrinet for the netboot process.
Loading a new disk image over Myrinet would similarly
be much faster than Ethernet-based disk image loading.

5.6 Netboot over Scaleable Coherent Inter-
face (SCI)

This model is perhaps the most interesting. SCI is a
memory-based network, and moving data requires only

6



a bcopy. When the kernel comes up it could configure an
SCI interface. Once the kernel has the interface config-
ured it could use SCI (via a fetch-and-add operation which
only takes 6 microseconds) to notify a remote server. The
remote server can bcopy a kernel image to the local node,
and the local node can use LOBOS to boot this image.
Or, more interesting, the remote server can bcopy a whole
ramdisk image in, and the local kernel can use that image.
SCI bandwidth on 32-bit PCI is about 80 MBytes/second,
so moving over a RAMDISK image could be done in a
few seconds. SCI has the further advantage that configur-
ing the interface only requires 128 bytes of configuration
data, and in fact the interface can be configured from a
remote controller node. LinuxBIOS doesn’t have to load
microcode into the interface, as it does for Myrinet.

5.7 Netboot using IP Multicast

If the whole cluster is booting, we can use IP Multicast
to distribute kernel and disk images. Most current tools
that support this mode (e.g. Ghost) run under DOS. In
our case, we have a full Linux kernel at our disposal and
can use IP Multicast for most data, and open TCP sockets
as needed to recover lost packets.

6 Current Status

LinuxBIOS is currently booting from power-on to mul-
tiuser mode on our Intel L440GX+ and Procomm BST1B
mainboards. We are also working with Compaq on the
Photon (Pentium) and DS10 (Alpha) systems; Dell on
their 2450 server; and VIA on one of their mainboards.
The code is available on sourceforget.net.

7 Conclusions

LinuxBIOS is a small BIOS that completely replaces the
standard BIOS with a simple bootstrap that loads Linux
from NVRAM and starts it up. LinuxBIOS makes new
types of cluster configuration, maintenance, and startup
models possible that were not practical to date. Based on
our near ten years of work with clusters we feel that Lin-
uxBIOS is essential to the construction of maintainable
clusters.

LinuxBIOS is working and we are beginning to receive
some interest and support from vendors. One vendor has
sent a pre-production mainboard and most of their BIOS
source. Other vendors are providing information and
engineering support, including support for non-Pentium
processors. We feel it is only a matter of time before the
16-bit, closed-source model of BIOSes is abandoned in
favor of Open Source BIOSes with extended capabilities
that the community needs

7


