
How to make hardware that
is unfriendly to coreboot

Ron Minnich
Google

also: Trammel Hudson, Patrick Georgi, Timothy
Pearson, Martin Roth, Stefan Reinauer, ...

Overview
● The “standard” PC is not the standard any more
● Assumptions that used to apply no longer do
● Vendors decide they don’t want some hardware
● Or design it in in a dumb way
● Or violate standards
● Or don’t tell you it’s there
● Or do it in a way that only firmware/BIOS/whatever know about
● Or install backdoors that can’t be turned off that are full of zero-days/exploits
● In this talk I’ll go over some examples in hopes that new hardware designers

can avoid them

The wall of shame
● No serial ports
● Non-standard baud rates (really happened!)
● More than one serial port, and the one that defaults to enabled is not the one

that’s hooked up
● Same for debug ports (eg USB debug) that exist but aren’t exposed (but drive

the webcam or similar nonsense)
● FLASH too small
● Complex audio paths without documentation

○ That require 5 MiB of firmware to play a beep

● ME, PSP, other auxiliary processors that control the “C”PU
● Multiple different devices marketed as the same name

Wall of shame (does it ever end?)
● Closed Graphics
● Closed Embedded Controllers
● "Verified Boot" modes that lock out any unsigned firmware (a.k.a. “TiVo-ised”

hardware), versus "measured boot" that allows user modification.
● Obfuscated / closed source ILOM / BMC solutions
● GPIO pin wiring that changes for no good reason

○ And requires overdependence on ACPI

● Hardware on the zero page
● Breaking port 0x80 (POST)

Serial port
● Vendors keep telling us it’s not there

○ Pushed “USB debug port” at us
○ After about 10 years ...

● EHCI (USB2) debug port hardware costs $100
● xHCI (USB3) debug requires RAM (optionally, ie never, provided by the

controller)
● So, here’s a question: what’s worst thing to debug

○ RAM startup

● What does xHCI debug require to work
○ RAM

● So, is the xHCI debug there for you when you really, really need it?
○ no

Serial port
● USB debug port does not coexist with normal USB operation

○ So how do you test the USB port when you need it for serial output?

● Way too complex
○ Requires, again, lots of things to be working
○ Old school serial port Outb %al, %dx is hard to beat

● Somehow, Universal Serial Bus forgot about “S” meaning “Serial”
● But is the serial port really “gone”?

Is the serial port really gone?
● To the best of my knowledge, no
● One way or another it’s always there, on some version of ICHx, or superio, or

something
● Because it’s basically impossible to do bringup/test without it

○ See previously slide about how much usb serial debug sucks

● So, if you’re designing, just make sure there’s a pad on there which people
can get to

● Input is good, but we can manage without it
● But we must have output
● Serial ports are the single best debugging tool we’ve had
● Yes, even more than JTAG

We’re willing to work for it! (thanks Trammel Hudson)

If one port is good, is two better?
● Usually not
● One board we worked on had two serial ports
● And the one that came up defaulting to “on” was not the connected one
● The connected port was a real mess to enable, requiring PCI config cycles
● Simple rule: the port you wire up should default to working at power on reset
● It’s fine to have more than one
● Just make sure that if only one is wired, it’s the one the defaults to on
● MiniPCI serial is another worst case so please don’t count on that

Standard baud rates
● This should be obvious, but
● If you are tempted to create parts with non-standard baud rates
● Don’t
● Yes, this happened
● No, it’s not a good idea
● Initial vendor response was “working as intended”
● Then “Won’t fix”
● Then “hang on, we’re fixing it”
● Because people needed it
● There’s no excuse for it

Small flash
● Linuxbios became coreboot when flash parts went from 512k to 256k
● The name change came 8 years later, but …
● The forcing function was the change in flash size
● People are once again looking at Linux in flash
● Advice: Make it easy
● Make flash parts 16 MiB and we have room to grow
● Kernel about 2M, initramfs 2-6M, leaves room for kernel, backup, 2 copies of

coreboot

Crazy complex audio paths
● Chromebooks among other things need to play a tone
● This should not take megabytes of flash space
● If you are going to drop one of these onto a board….
● Consider dropping enough simple hardware so we can do pwm in software

ME, PSP, and friends
● The ME has been a matter of concern for years
● And we were right to be concerned
● It’s been broken for ten years in a way that left us all vulnerable

○ https://semiaccurate.com/2017/05/01/remote-security-exploit-2008-intel-platforms/

● Chip vendors: learn from that mistake; don’t repeat it
○ Even though you keep repeating it :-), see, e.g., WEP

● If you want to create security infrastructure, go to the community first
● Maybe it could be good, and minimal, and work

○ ME is none of these things

● If you make our security depend on you, open review process is mandatory
● Trusted boot, not secure boot, should be the rule

Multiple different devices marketed with same name
● Simple case: two laptops, same part number
● Utterly different motherboards inside
● We realize this is SOP in the PC world
● But it should stop
● Product names should define a unique implementation

Graphics
● Make graphics controllable from firmware
● We’ve done measurements in coreboot
● It turns out to be a good place to do graphics

○ Better than kernel performance
○ Better than binary blob quality and openness

● The native graphics init in coreboot has worked for five years now
● It’s not been a technical issue for all that time
● What’s holding up chipset vendors?

○ You know who you are
○ And we all know why you’re doing it

How fast it can be (sorry, Docs broke, won’t view)

https://docs.google.com/file/d/0By47TDljmWaSTjRUTG5pTWp2Qlk/preview

How fast it can be ● Left: Linux
○ Which must be very general

● The VGA ROM blob is far worse
● Right: coreboot

○ Specialized to the platform
● We can skip lots of probing and

delays, and hence run faster, with
coreboot

● In one case we reduced 7.7 seconds
to 2.7 seconds

● This is possible if graphics
information is available

● But vendors still want to use slow,
inflexible, buggy blobs

● From an old email: “... we just got told
we need to get NDA docs to fix the
GPL DRIVER IN THE KERNEL.”

https://docs.google.com/file/d/0By47TDljmWaSTjRUTG5pTWp2Qlk/preview

Embedded Controllers
● We are long past the time that these can be 8 bits
● The closed nature of them has been a problem for some OEMs
● And you don’t need to write your own
● Google has industrial-strength code available for free

○ 20M Chromebooks can’t be wrong

● There’s also an OpenBMC effort (Tim Pearson!)
● Same rules apply: security-critical functions should be open and reviewed

GPIO
● This problem really became apparent with Opteron
● Certain GPIOs were needed for memory operation (RST, CKE, etc.)
● AMD had no recommendation of which we know
● So of course, every vendor chose a different set
● And, worse, changed it for each new board
● And, worse, sometimes changed it for revisions of a board type
● How did we know which GPIO to use?
● Sometimes, the vendor told us
● Other times, well ...

Don’t make us go there
● Image courtesy

http://uvicrec.blogspot.com/2015/08/xy-r
ay-x-ray-scanner.html

● Yes, people really do this
● First time I heard of it, a friend at SGI

took a board from IBM to a veterinary
clinic

http://uvicrec.blogspot.com/2015/08/xy-ray-x-ray-scanner.html
http://uvicrec.blogspot.com/2015/08/xy-ray-x-ray-scanner.html
http://uvicrec.blogspot.com/2015/08/xy-ray-x-ray-scanner.html

GPIOs
● Chipset vendors: if you have required GPIOs, provided guidance
● Board vendors: if you have required GPIOs, at least make sure they are the

same as much as possible, at the least for the same board type!
● Because it’s not like we can’t figure it out anyway

○ Schematics of (at minimum) low speed board regions help increase trust in hardware
○ Information contained in board netlist generally not able to be considered “trade secret”

■ Can be extracted from physical board via trivial processes
■ Withholding schematics just slows down devs w/o meaningfully impacting bad actors

○ Additional information beyond mere schematic data normally discovered during netlist RE
■ May not be good for vendor’s image -- faulty routing, poor design, questionable quality
■ Netlist RE of a physical board cannot be legally stopped, but...
■ ...released schematics make routing level and lower flaws less likely to be discovered

Hardware on “page zero”
● I.e. hardware that requires that NULL pointers be valid
● Please don’t do this
● It makes setting up paging to catch NULL pointer usage almost impossible
● Workaround
● P = mallocalign(4096, 4096)
● Zp = map(p, NULL);
● Now we can use ZP to address the NULL page
● But let’s just try to avoid this altogether, eh?

Don’t break POST (just saw another note today!)
● Here’s a classic ISA POST card

design (thanks
http://bbright.tripod.com/informati
on/postcard.htm)

● On PCI, POST cards have to
work whether present or not

● How’s this work? Via IO errors:
○ POST never responds
○ Hardware sees timeouts

and acts accordingly
● outb to 0x80 is an error ...
● Coreboot does outbs
● Don’t make your chipset lock up if

there is an IO error!
○ Yes, this happened
○ Forced us to add config

option

http://bbright.tripod.com/information/postcard.htm
http://bbright.tripod.com/information/postcard.htm
http://bbright.tripod.com/information/postcard.htm

Summary
● If you follow a few simple rules, coreboot ports are pretty easy
● If you don’t, they can really be miserable

○ Which is why, 5 years in, there’s a board we still don’t want to finish a port for
○ No, can’t tell you more

● And if you really get clever, you might even make a port impossible
● There’s an upside to following these rules
● They can greatly reduce the cost of board design and bringup
● They can greatly ease all firmware ports, not just coreboot ports
● They can greatly ease problem resolution
● And the people on the list can give you really good advice, so be sure to ask!

extra

More cool stuff
● Power decouple SPI from board
● SPI header
● LPC header? (dead, and security hole?) [for TPM?]
● JTAG? [pads, not header]
● Case closed debugging that is open and in all new chromebooks

○ See chromeos wiki, chrome EC codebase
○ On USB-C port you get uarts, SPI,
○ Just needs modified EC code
○ Found in chrome EC code but does not require full chrome EC part or all its software

● “Golden connector” as on thinkpad

BMC / ILOM (Tim Pearson)
● Traditionally closed source (AMI)

○ Riddled with security holes
○ Spawned an entire generation of system architectures assuming BMC has no security at all!

● Excellent alternative (OpenBMC) already exists
○ Used in production (ships installed from vendor) on IBM OpenPOWER systems
○ x86 versions also “in the wild”
○ Most BMC designs use ASpeed hardware; OpenBMC ready to use on many ASpeed devices

● BMC needs to have secure boot ability
○ BMC can be significant attack vector due to network access and privileged position on board
○ ASpeed does not integrated secure boot hardware into their devices

■ This is a good thing! Vendor signing here would render BMC a useless security risk
○ Use a secure boot solution from the list of options on the ME/PSP avoidance slide

■ FlexVer, OTP boot key, TPM, etc.

● BMC must not have undisclosed access to any part of the system!

How to avoid ME, PSP, and friends (Tim Pearson)
● Many decentralized options available for a truly secure boot

○ FlexVer™ auditable measured boot (Raptor Engineering)
○ OTP boot signing keys (Qualcomm QorIQ, other embedded systems)
○ TPM-based measured boot (Google, IBM)

● Pick one or more and use them!
● Caveats

○ Adding any of these technologies to an ME or PSP enabled platform does not mitigate threat
○ Listed technologies are only useful on platforms that do not contain an ME, PSP, or equivalent

■ Adding them won’t necessarily harm security, but won’t help security either

● OEMs must pressure x86 vendors to offer securable CPUs without ME, PSP
○ Otherwise, x86 will be abandoned for secure platforms with high value data

BMC / ILOM (from Tim)
● BMC must not have undisclosed access to any part of the system!

○ Undocumented NCSII links to one or more system Ethernet ports borders on negligent
○ BMC should not be able to alter the main system Flash ROM while machine power is on!

■ SMI exploits possible
■ FlexVer™ / TPM can mitigate somewhat, TPM is less able to do so
■ BMC secure boot can help mitigate this attack vector

● Weak BMC access mechanisms should be disabled by default
○ Username/password for network-based effective local root access? Not a good idea…

■ SSH disables this by default for a reason!
○ Consider Kerberos or other cryptographic authentication solution for BMC access

Why the ME, PSP, and friends must be avoided
(from Tim)
● Don’t repeat the mistakes of the centralised SSL authentication system!

○ Also known as “Crack once, hack everywhere”...
■ Centralized systems always end up being hacked, often to devastating effect

● Remember “Code Red”? “Blaster”? Now extend to the physical hardware…
● Monocultures, especially those under strict vendor control, remain a severe hazard

○ Legal framework for data breach liability still in flux (and varying with jurisdiction)
■ Data breaches are being taken more seriously year after year (GDPR, etc.)
■ Does hardware vendor have control of platform? If so, does this equal legal liability?
■ Hardware vendor may end up paying large fines for data breaches….
■ ...or platform vendor may select alternate hardware if platform vendor is legally liable
■ Standard “platform no longer supported” caveat may not protect from legal liability

● Liability of vendor retaining full control w/ signed firmware remains largely untested

● Decentralization makes hacking any particular target much harder
○ Brute force no longer viable option -- cost / benefit ratio much lower outside of select targets
○ “Dragnet”-type hacking and surveillance of private systems no longer viable

