How to make hardware that
IS unfriendly to coreboot

Ron Minnich
Google

also: Trammel Hudson, Patrick Georgi, Timothy
Pearson, Martin Roth, Stefan Reinauer, ...

Overview

The “standard” PC is not the standard any more

Assumptions that used to apply no longer do

Vendors decide they don’t want some hardware

Or design it in in a dumb way

Or violate standards

Or don'’t tell you it’s there

Or do it in a way that only firmware/BIOS/whatever know about

Or install backdoors that can’t be turned off that are full of zero-days/exploits
In this talk I'll go over some examples in hopes that new hardware designers
can avoid them

The wall of shame

e No serial ports

e Non-standard baud rates (really happened!)

e More than one serial port, and the one that defaults to enabled is not the one
that’s hooked up

e Same for debug ports (eg USB debug) that exist but aren’t exposed (but drive
the webcam or similar nonsense)

e FLASH too small

e Complex audio paths without documentation
o That require 5 MiB of firmware to play a beep

e ME, PSP, other auxiliary processors that control the “C"PU
e Multiple different devices marketed as the same name

Wall of shame (does it ever end?)

e Closed Graphics

e Closed Embedded Controllers

e "Verified Boot" modes that lock out any unsigned firmware (a.k.a. “TiVo-ised”
hardware), versus "measured boot" that allows user modification.

e Obfuscated / closed source ILOM / BMC solutions

e GPIO pin wiring that changes for no good reason
o And requires overdependence on ACPI
e Hardware on the zero page

e Breaking port 0x80 (POST)

Serial port

e Vendors keep telling us it's not there
o Pushed “USB debug port” at us
o After about 10 years ...

e EHCI (USB2) debug port hardware costs $100
e xHCI (USB3) debug requires RAM (optionally, ie never, provided by the
controller)
e S0, here's a question: what’s worst thing to debug
o RAM startup

e \What does xHCI debug require to work
o RAM

e So, is the xHCI debug there for you when you really, really need it?
©) no

Serial port

e USB debug port does not coexist with normal USB operation
o So how do you test the USB port when you need it for serial output?

e Way too complex

o Requires, again, lots of things to be working
o Old school serial port Outb %al, %dx is hard to beat

e Somehow, Universal Serial Bus forgot about “S” meaning “Serial”
e But is the serial port really “gone™?

Is the serial port really gone?

e To the best of my knowledge, no
e One way or another it's always there, on some version of ICHXx, or superio, or
something

e Because it's basically impossible to do bringup/test without it
o See previously slide about how much usb serial debug sucks

e So, if you're designing, just make sure there’s a pad on there which people
can get to

Input is good, but we can manage without it

But we must have output

Serial ports are the single best debugging tool we've had

Yes, even more than JTAG

We're W|II|ng to work for it! (thanks Trammel Hudson)

If one port is good, is two better?

Usually not

One board we worked on had two serial ports

And the one that came up defaulting to “on” was not the connected one

The connected port was a real mess to enable, requiring PCI config cycles
Simple rule: the port you wire up should default to working at power on reset
It's fine to have more than one

Just make sure that if only one is wired, it's the one the defaults to on
MiniPCI serial is another worst case so please don’t count on that

Standard baud rates

This should be obvious, but

If you are tempted to create parts with non-standard baud rates
Don’t

Yes, this happened

No, it's not a good idea

Initial vendor response was “working as intended”

Then “Won't fix”

Then “hang on, we’re fixing it”

Because people needed it

There’s no excuse for it

Small flash

Linuxbios became coreboot when flash parts went from 512k to 256k

The name change came 8 years later, but ...

The forcing function was the change in flash size

People are once again looking at Linux in flash

Advice: Make it easy

Make flash parts 16 MiB and we have room to grow

Kernel about 2M, initramfs 2-6M, leaves room for kernel, backup, 2 copies of
coreboot

Crazy complex audio paths

Chromebooks among other things need to play a tone

This should not take megabytes of flash space

If you are going to drop one of these onto a board....

Consider dropping enough simple hardware so we can do pwm in software

ME, PSP, and friends

e The ME has been a matter of concern for years
e And we were right to be concerned

e It's been broken for ten years in a way that left us all vulnerable

o https://semiaccurate.com/2017/05/01/remote-security-exploit-2008-intel-platforms/
e Chip vendors: learn from that mistake; don’t repeat it

o Even though you keep repeating it :-), see, e.g., WEP
e If you want to create security infrastructure, go to the community first

e Maybe it could be good, and minimal, and work
o ME is none of these things

e If you make our security depend on you, open review process is mandatory
e Trusted boot, not secure boot, should be the rule

Multiple different devices marketed with same name

Simple case: two laptops, same part number

Utterly different motherboards inside

We realize this is SOP in the PC world

But it should stop

Product names should define a unique implementation

Graphics

e Make graphics controllable from firmware
e \We've done measurements in coreboot

e |t turns out to be a good place to do graphics

o Better than kernel performance
o Better than binary blob quality and openness

e The native graphics init in coreboot has worked for five years now
e It's not been a technical issue for all that time

e \What's holding up chipset vendors?

o You know who you are
o And we all know why you’re doing it

How fast it can be (sorry, Docs broke, won’t view)

https://docs.google.com/file/d/0By47TDljmWaSTjRUTG5pTWp2Qlk/preview

How fast it can be

Left: Linux

o Which must be very general
The VGA ROM blob is far worse
Right: coreboot

o Specialized to the platform
We can skip lots of probing and
delays, and hence run faster, with
coreboot
In one case we reduced 7.7 seconds
to 2.7 seconds
This is possible if graphics
information is available
But vendors still want to use slow,
inflexible, buggy blobs
From an old email: “... we just got told
we need to get NDA docs to fix the
GPL DRIVER IN THE KERNEL.”

https://docs.google.com/file/d/0By47TDljmWaSTjRUTG5pTWp2Qlk/preview

Embedded Controllers

We are long past the time that these can be 8 bits
The closed nature of them has been a problem for some OEMs
And you don’t need to write your own

Google has industrial-strength code available for free
o 20M Chromebooks can’t be wrong

There’s also an OpenBMC effort (Tim Pearson!)
Same rules apply: security-critical functions should be open and reviewed

GPIO

This problem really became apparent with Opteron

Certain GPIOs were needed for memory operation (RST, CKE, etc.)
AMD had no recommendation of which we know

So of course, every vendor chose a different set

And, worse, changed it for each new board

And, worse, sometimes changed it for revisions of a board type
How did we know which GPIO to use?

Sometimes, the vendor told us

Other times, well ...

Don’'t make us go there

A
1977
si:!s:!{.-;/.@;:zé///,

Wit i,
e

B

AN TR TR

Image courtesy
http://uvicrec.blogspot.com/2015/08/xy-r

ay-x-ray-scanner.html

Yes, people really do this

First time | heard of it, a friend at SGI
took a board from IBM to a veterinary
clinic

http://uvicrec.blogspot.com/2015/08/xy-ray-x-ray-scanner.html
http://uvicrec.blogspot.com/2015/08/xy-ray-x-ray-scanner.html
http://uvicrec.blogspot.com/2015/08/xy-ray-x-ray-scanner.html

GPIOs

e Chipset vendors: if you have required GPIOs, provided guidance
e Board vendors: if you have required GPIOs, at least make sure they are the
same as much as possible, at the least for the same board type!

e Because it's not like we can't figure it out anyway
o Schematics of (at minimum) low speed board regions help increase trust in hardware
o Information contained in board netlist generally not able to be considered “trade secret”
m Can be extracted from physical board via trivial processes
m Withholding schematics just slows down devs w/o meaningfully impacting bad actors
o Additional information beyond mere schematic data normally discovered during netlist RE
m May not be good for vendor’s image -- faulty routing, poor design, questionable quality
m Netlist RE of a physical board cannot be legally stopped, but...
m ...released schematics make routing level and lower flaws less likely to be discovered

Hardware on “page zero”

|.e. hardware that requires that NULL pointers be valid

Please don’t do this

It makes setting up paging to catch NULL pointer usage almost impossible
Workaround

P = mallocalign(4096, 4096)

Zp = map(p, NULL);

Now we can use ZP to address the NULL page

But let’s just try to avoid this altogether, eh?

Don’t break POST (just saw another note today!)

|P.O.S.T. Card Code Readerl

o e Here’s a classic ISA POST card

= e Reads port 80H on ISA =lot deSign (thanks
e http://bbright.tripod.com/informati
on/postcard.htm)
R T e On PCI, POST cards have to
. o ol fmnzfsz i work whether present or not
e 2 ; » - e How’s this work? Via IO errors:
" | S & TH: R o POST never responds
zg : i—j—l | M o Hardware sees timeouts
and acts accordingly
— 1 e outb to 0x80 is an error ...
T 3 e Coreboot does outbs
l:;l 5 3?13; fe ¢ e e Don’t make your chipset lock up if
j:;:: 5 o s RE T there is an 10 error!
= et i S| HE OB . o Yes, this happened
T L s o Forced us to add config
w option

http://bbright.tripod.com/information/postcard.htm
http://bbright.tripod.com/information/postcard.htm
http://bbright.tripod.com/information/postcard.htm

Summary

If you follow a few simple rules, coreboot ports are pretty easy

If you don’t, they can really be miserable

o Which is why, 5 years in, there’s a board we still don’t want to finish a port for
o No, can’t tell you more

And if you really get clever, you might even make a port impossible

There’s an upside to following these rules

They can greatly reduce the cost of board design and bringup

They can greatly ease all firmware ports, not just coreboot ports

They can greatly ease problem resolution

And the people on the list can give you really good advice, so be sure to ask!

extra

More cool stuff

Power decouple SPI from board

SPI header

LPC header? (dead, and security hole?) [for TPM?]
JTAG? [pads, not header]

Case closed debugging that is open and in all new chromebooks

See chromeos wiki, chrome EC codebase

On USB-C port you get uarts, SPI,

Just needs modified EC code

o Found in chrome EC code but does not require full chrome EC part or all its software

e “Golden connector’ as on thinkpad

o O O

BMC / ILOM (Tim Pearson)

e Traditionally closed source (AMI)
o Riddled with security holes
o Spawned an entire generation of system architectures assuming BMC has no security at all!

e Excellent alternative (OpenBMC) already exists
o Used in production (ships installed from vendor) on IBM OpenPOWER systems
o x86 versions also “in the wild”
o Most BMC designs use ASpeed hardware; OpenBMC ready to use on many ASpeed devices

e BMC needs to have secure boot ability
o BMC can be significant attack vector due to network access and privileged position on board
o ASpeed does not integrated secure boot hardware into their devices
m Thisis a good thing! Vendor signing here would render BMC a useless security risk

o Use a secure boot solution from the list of options on the ME/PSP avoidance slide
m FlexVer, OTP boot key, TPM, etc.

e BMC must not have undisclosed access to any part of the system!

How to avoid ME, PSP, and friends (Tim Pearson)

e Many decentralized options available for a truly secure boot
o FlexVer™ auditable measured boot (Raptor Engineering)

o OTP boot signing keys (Qualcomm QorlQ, other embedded systems)
o TPM-based measured boot (Google, IBM)

e Pick one or more and use them!
e Caveats
o Adding any of these technologies to an ME or PSP enabled platform does not mitigate threat

o Listed technologies are only useful on platforms that do not contain an ME, PSP, or equivalent
m Adding them won'’t necessarily harm security, but won’t help security either

e OEMs must pressure x86 vendors to offer securable CPUs without ME, PSP
o Otherwise, x86 will be abandoned for secure platforms with high value data

BMC / ILOM (from Tim)

e BMC must not have undisclosed access to any part of the system!
o Undocumented NCSII links to one or more system Ethernet ports borders on negligent
o BMC should not be able to alter the main system Flash ROM while machine power is on!
m SMI exploits possible
m FlexVer™ / TPM can mitigate somewhat, TPM is less able to do so
m BMC secure boot can help mitigate this attack vector

e \Weak BMC access mechanisms should be disabled by default

o Username/password for network-based effective local root access? Not a good idea...
m SSH disables this by default for a reason!
o Consider Kerberos or other cryptographic authentication solution for BMC access

Why the ME, PSP, and friends must be avoided

frq;’n 2
(on’t repeat the mistakes of the centralised SSL authentication system!

o Also known as “Crack once, hack everywhere”...
m Centralized systems always end up being hacked, often to devastating effect
e Remember “Code Red”? “Blaster”? Now extend to the physical hardware...
e Monocultures, especially those under strict vendor control, remain a severe hazard
o Legal framework for data breach liability still in flux (and varying with jurisdiction)
m Data breaches are being taken more seriously year after year (GDPR, etc.)
m Does hardware vendor have control of platform? If so, does this equal legal liability?
m Hardware vendor may end up paying large fines for data breaches....
m ...or platform vendor may select alternate hardware if platform vendor is legally liable
m Standard “platform no longer supported” caveat may not protect from legal liability
e Liability of vendor retaining full control w/ signed firmware remains largely untested

e Decentralization makes hacking any particular target much harder
o Brute force no longer viable option -- cost / benefit ratio much lower outside of select targets
o “Dragnet’-type hacking and surveillance of private systems no longer viable

