File: | lib/device_tree.c |
Warning: | line 753, column 2 Dereference of null pointer |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
1 | /* Taken from depthcharge: src/base/device_tree.c */ | |||
2 | /* SPDX-License-Identifier: GPL-2.0-or-later */ | |||
3 | ||||
4 | #include <assert.h> | |||
5 | #include <console/console.h> | |||
6 | #include <ctype.h> | |||
7 | #include <device_tree.h> | |||
8 | #include <endian.h> | |||
9 | #include <stdint.h> | |||
10 | #include <string.h> | |||
11 | #include <stddef.h> | |||
12 | #include <stdlib.h> | |||
13 | ||||
14 | /* | |||
15 | * Functions for picking apart flattened trees. | |||
16 | */ | |||
17 | ||||
18 | int fdt_next_property(const void *blob, uint32_t offset, | |||
19 | struct fdt_property *prop) | |||
20 | { | |||
21 | struct fdt_header *header = (struct fdt_header *)blob; | |||
22 | uint32_t *ptr = (uint32_t *)(((uint8_t *)blob) + offset); | |||
23 | ||||
24 | int index = 0; | |||
25 | if (be32toh(ptr[index++]) != FDT_TOKEN_PROPERTY3) | |||
26 | return 0; | |||
27 | ||||
28 | uint32_t size = be32toh(ptr[index++]); | |||
29 | uint32_t name_offset = be32toh(ptr[index++]); | |||
30 | name_offset += be32toh(header->strings_offset); | |||
31 | ||||
32 | if (prop) { | |||
33 | prop->name = (char *)((uint8_t *)blob + name_offset); | |||
34 | prop->data = &ptr[index]; | |||
35 | prop->size = size; | |||
36 | } | |||
37 | ||||
38 | index += DIV_ROUND_UP(size, sizeof(uint32_t))({ __typeof__(size) _div_local_x = (size); __typeof__(sizeof( uint32_t)) _div_local_y = (sizeof(uint32_t)); (_div_local_x + _div_local_y - 1) / _div_local_y; }); | |||
39 | ||||
40 | return index * sizeof(uint32_t); | |||
41 | } | |||
42 | ||||
43 | int fdt_node_name(const void *blob, uint32_t offset, const char **name) | |||
44 | { | |||
45 | uint8_t *ptr = ((uint8_t *)blob) + offset; | |||
46 | if (be32dec(ptr) != FDT_TOKEN_BEGIN_NODE1) | |||
47 | return 0; | |||
48 | ||||
49 | ptr += 4; | |||
50 | if (name) | |||
51 | *name = (char *)ptr; | |||
52 | return ALIGN_UP(strlen((char *)ptr) + 1, sizeof(uint32_t))((((strlen((char *)ptr) + 1))+((__typeof__((strlen((char *)ptr ) + 1)))((sizeof(uint32_t)))-1UL))&~((__typeof__((strlen( (char *)ptr) + 1)))((sizeof(uint32_t)))-1UL)) + 4; | |||
53 | } | |||
54 | ||||
55 | static int dt_prop_is_phandle(struct device_tree_property *prop) | |||
56 | { | |||
57 | return !(strcmp("phandle", prop->prop.name) && | |||
58 | strcmp("linux,phandle", prop->prop.name)); | |||
59 | } | |||
60 | ||||
61 | ||||
62 | ||||
63 | /* | |||
64 | * Functions for printing flattened trees. | |||
65 | */ | |||
66 | ||||
67 | static void print_indent(int depth) | |||
68 | { | |||
69 | printk(BIOS_DEBUG7, "%*s", depth * 8, ""); | |||
70 | } | |||
71 | ||||
72 | static void print_property(const struct fdt_property *prop, int depth) | |||
73 | { | |||
74 | int is_string = prop->size > 0 && | |||
75 | ((char *)prop->data)[prop->size - 1] == '\0'; | |||
76 | ||||
77 | if (is_string) { | |||
78 | for (int i = 0; i < prop->size - 1; i++) { | |||
79 | if (!isprint(((char *)prop->data)[i])) { | |||
80 | is_string = 0; | |||
81 | break; | |||
82 | } | |||
83 | } | |||
84 | } | |||
85 | ||||
86 | print_indent(depth); | |||
87 | if (is_string) { | |||
88 | printk(BIOS_DEBUG7, "%s = \"%s\";\n", | |||
89 | prop->name, (const char *)prop->data); | |||
90 | } else { | |||
91 | printk(BIOS_DEBUG7, "%s = < ", prop->name); | |||
92 | for (int i = 0; i < MIN(128, prop->size)__builtin_choose_expr( __builtin_constant_p(128) && __builtin_constant_p (prop->size), ((128) < (prop->size) ? (128) : (prop-> size)), ({ __typeof__( __builtin_choose_expr(__builtin_constant_p (128), prop->size, 128)) __tmpname_28 = (128); __typeof__( __builtin_choose_expr(__builtin_constant_p(prop->size), 128 , prop->size)) __tmpname_29 = (prop->size); __tmpname_28 < __tmpname_29 ? __tmpname_28 : __tmpname_29; })); i += 4) { | |||
93 | uint32_t val = 0; | |||
94 | for (int j = 0; j < MIN(4, prop->size - i)__builtin_choose_expr( __builtin_constant_p(4) && __builtin_constant_p (prop->size - i), ((4) < (prop->size - i) ? (4) : (prop ->size - i)), ({ __typeof__( __builtin_choose_expr(__builtin_constant_p (4), prop->size - i, 4)) __tmpname_30 = (4); __typeof__( __builtin_choose_expr (__builtin_constant_p(prop->size - i), 4, prop->size - i )) __tmpname_31 = (prop->size - i); __tmpname_30 < __tmpname_31 ? __tmpname_30 : __tmpname_31; })); j++) | |||
95 | val |= ((uint8_t *)prop->data)[i + j] << | |||
96 | (24 - j * 8); | |||
97 | printk(BIOS_DEBUG7, "%#.2x ", val); | |||
98 | } | |||
99 | if (prop->size > 128) | |||
100 | printk(BIOS_DEBUG7, "..."); | |||
101 | printk(BIOS_DEBUG7, ">;\n"); | |||
102 | } | |||
103 | } | |||
104 | ||||
105 | static int print_flat_node(const void *blob, uint32_t start_offset, int depth) | |||
106 | { | |||
107 | int offset = start_offset; | |||
108 | const char *name; | |||
109 | int size; | |||
110 | ||||
111 | size = fdt_node_name(blob, offset, &name); | |||
112 | if (!size) | |||
113 | return 0; | |||
114 | offset += size; | |||
115 | ||||
116 | print_indent(depth); | |||
117 | printk(BIOS_DEBUG7, "%s {\n", name); | |||
118 | ||||
119 | struct fdt_property prop; | |||
120 | while ((size = fdt_next_property(blob, offset, &prop))) { | |||
121 | print_property(&prop, depth + 1); | |||
122 | ||||
123 | offset += size; | |||
124 | } | |||
125 | ||||
126 | printk(BIOS_DEBUG7, "\n"); /* empty line between props and nodes */ | |||
127 | ||||
128 | while ((size = print_flat_node(blob, offset, depth + 1))) | |||
129 | offset += size; | |||
130 | ||||
131 | print_indent(depth); | |||
132 | printk(BIOS_DEBUG7, "}\n"); | |||
133 | ||||
134 | return offset - start_offset + sizeof(uint32_t); | |||
135 | } | |||
136 | ||||
137 | void fdt_print_node(const void *blob, uint32_t offset) | |||
138 | { | |||
139 | print_flat_node(blob, offset, 0); | |||
140 | } | |||
141 | ||||
142 | ||||
143 | ||||
144 | /* | |||
145 | * A utility function to skip past nodes in flattened trees. | |||
146 | */ | |||
147 | ||||
148 | int fdt_skip_node(const void *blob, uint32_t start_offset) | |||
149 | { | |||
150 | int offset = start_offset; | |||
151 | int size; | |||
152 | ||||
153 | const char *name; | |||
154 | size = fdt_node_name(blob, offset, &name); | |||
155 | if (!size) | |||
156 | return 0; | |||
157 | offset += size; | |||
158 | ||||
159 | while ((size = fdt_next_property(blob, offset, NULL((void *)0)))) | |||
160 | offset += size; | |||
161 | ||||
162 | while ((size = fdt_skip_node(blob, offset))) | |||
163 | offset += size; | |||
164 | ||||
165 | return offset - start_offset + sizeof(uint32_t); | |||
166 | } | |||
167 | ||||
168 | ||||
169 | ||||
170 | /* | |||
171 | * Functions to turn a flattened tree into an unflattened one. | |||
172 | */ | |||
173 | ||||
174 | static int fdt_unflatten_node(const void *blob, uint32_t start_offset, | |||
175 | struct device_tree *tree, | |||
176 | struct device_tree_node **new_node) | |||
177 | { | |||
178 | struct list_node *last; | |||
179 | int offset = start_offset; | |||
180 | const char *name; | |||
181 | int size; | |||
182 | ||||
183 | size = fdt_node_name(blob, offset, &name); | |||
184 | if (!size) | |||
185 | return 0; | |||
186 | offset += size; | |||
187 | ||||
188 | struct device_tree_node *node = xzalloc(sizeof(*node))xzalloc_work((sizeof(*node)), "src/lib/device_tree.c", __func__ , 188); | |||
189 | *new_node = node; | |||
190 | node->name = name; | |||
191 | ||||
192 | struct fdt_property fprop; | |||
193 | last = &node->properties; | |||
194 | while ((size = fdt_next_property(blob, offset, &fprop))) { | |||
195 | struct device_tree_property *prop = xzalloc(sizeof(*prop))xzalloc_work((sizeof(*prop)), "src/lib/device_tree.c", __func__ , 195); | |||
196 | prop->prop = fprop; | |||
197 | ||||
198 | if (dt_prop_is_phandle(prop)) { | |||
199 | node->phandle = be32dec(prop->prop.data); | |||
200 | if (node->phandle > tree->max_phandle) | |||
201 | tree->max_phandle = node->phandle; | |||
202 | } | |||
203 | ||||
204 | list_insert_after(&prop->list_node, last); | |||
205 | last = &prop->list_node; | |||
206 | ||||
207 | offset += size; | |||
208 | } | |||
209 | ||||
210 | struct device_tree_node *child; | |||
211 | last = &node->children; | |||
212 | while ((size = fdt_unflatten_node(blob, offset, tree, &child))) { | |||
213 | list_insert_after(&child->list_node, last); | |||
214 | last = &child->list_node; | |||
215 | ||||
216 | offset += size; | |||
217 | } | |||
218 | ||||
219 | return offset - start_offset + sizeof(uint32_t); | |||
220 | } | |||
221 | ||||
222 | static int fdt_unflatten_map_entry(const void *blob, uint32_t offset, | |||
223 | struct device_tree_reserve_map_entry **new) | |||
224 | { | |||
225 | const uint64_t *ptr = (const uint64_t *)(((uint8_t *)blob) + offset); | |||
226 | const uint64_t start = be64toh(ptr[0]); | |||
227 | const uint64_t size = be64toh(ptr[1]); | |||
228 | ||||
229 | if (!size) | |||
230 | return 0; | |||
231 | ||||
232 | struct device_tree_reserve_map_entry *entry = xzalloc(sizeof(*entry))xzalloc_work((sizeof(*entry)), "src/lib/device_tree.c", __func__ , 232); | |||
233 | *new = entry; | |||
234 | entry->start = start; | |||
235 | entry->size = size; | |||
236 | ||||
237 | return sizeof(uint64_t) * 2; | |||
238 | } | |||
239 | ||||
240 | struct device_tree *fdt_unflatten(const void *blob) | |||
241 | { | |||
242 | struct device_tree *tree = xzalloc(sizeof(*tree))xzalloc_work((sizeof(*tree)), "src/lib/device_tree.c", __func__ , 242); | |||
243 | const struct fdt_header *header = (const struct fdt_header *)blob; | |||
244 | tree->header = header; | |||
245 | ||||
246 | uint32_t magic = be32toh(header->magic); | |||
247 | uint32_t version = be32toh(header->version); | |||
248 | uint32_t last_comp_version = be32toh(header->last_comp_version); | |||
249 | ||||
250 | if (magic != FDT_HEADER_MAGIC0xd00dfeed) { | |||
251 | printk(BIOS_DEBUG7, "Invalid device tree magic %#.8x!\n", magic); | |||
252 | free(tree); | |||
253 | return NULL((void *)0); | |||
254 | } | |||
255 | if (last_comp_version > FDT_SUPPORTED_VERSION17) { | |||
256 | printk(BIOS_DEBUG7, "Unsupported device tree version %u(>=%u)\n", | |||
257 | version, last_comp_version); | |||
258 | free(tree); | |||
259 | return NULL((void *)0); | |||
260 | } | |||
261 | if (version > FDT_SUPPORTED_VERSION17) | |||
262 | printk(BIOS_NOTICE5, "FDT version %u too new, should add support!\n", | |||
263 | version); | |||
264 | ||||
265 | uint32_t struct_offset = be32toh(header->structure_offset); | |||
266 | uint32_t strings_offset = be32toh(header->strings_offset); | |||
267 | uint32_t reserve_offset = be32toh(header->reserve_map_offset); | |||
268 | uint32_t min_offset = 0; | |||
269 | min_offset = MIN(struct_offset, strings_offset)__builtin_choose_expr( __builtin_constant_p(struct_offset) && __builtin_constant_p(strings_offset), ((struct_offset) < ( strings_offset) ? (struct_offset) : (strings_offset)), ({ __typeof__ ( __builtin_choose_expr(__builtin_constant_p(struct_offset), strings_offset , struct_offset)) __tmpname_32 = (struct_offset); __typeof__( __builtin_choose_expr(__builtin_constant_p(strings_offset), struct_offset , strings_offset)) __tmpname_33 = (strings_offset); __tmpname_32 < __tmpname_33 ? __tmpname_32 : __tmpname_33; })); | |||
270 | min_offset = MIN(min_offset, reserve_offset)__builtin_choose_expr( __builtin_constant_p(min_offset) && __builtin_constant_p(reserve_offset), ((min_offset) < (reserve_offset ) ? (min_offset) : (reserve_offset)), ({ __typeof__( __builtin_choose_expr (__builtin_constant_p(min_offset), reserve_offset, min_offset )) __tmpname_34 = (min_offset); __typeof__( __builtin_choose_expr (__builtin_constant_p(reserve_offset), min_offset, reserve_offset )) __tmpname_35 = (reserve_offset); __tmpname_34 < __tmpname_35 ? __tmpname_34 : __tmpname_35; })); | |||
271 | /* Assume everything up to the first non-header component is part of | |||
272 | the header and needs to be preserved. This will protect us against | |||
273 | new elements being added in the future. */ | |||
274 | tree->header_size = min_offset; | |||
275 | ||||
276 | struct device_tree_reserve_map_entry *entry; | |||
277 | uint32_t offset = reserve_offset; | |||
278 | int size; | |||
279 | struct list_node *last = &tree->reserve_map; | |||
280 | while ((size = fdt_unflatten_map_entry(blob, offset, &entry))) { | |||
281 | list_insert_after(&entry->list_node, last); | |||
282 | last = &entry->list_node; | |||
283 | ||||
284 | offset += size; | |||
285 | } | |||
286 | ||||
287 | fdt_unflatten_node(blob, struct_offset, tree, &tree->root); | |||
288 | ||||
289 | return tree; | |||
290 | } | |||
291 | ||||
292 | ||||
293 | ||||
294 | /* | |||
295 | * Functions to find the size of the device tree if it was flattened. | |||
296 | */ | |||
297 | ||||
298 | static void dt_flat_prop_size(struct device_tree_property *prop, | |||
299 | uint32_t *struct_size, uint32_t *strings_size) | |||
300 | { | |||
301 | /* Starting token. */ | |||
302 | *struct_size += sizeof(uint32_t); | |||
303 | /* Size. */ | |||
304 | *struct_size += sizeof(uint32_t); | |||
305 | /* Name offset. */ | |||
306 | *struct_size += sizeof(uint32_t); | |||
307 | /* Property value. */ | |||
308 | *struct_size += ALIGN_UP(prop->prop.size, sizeof(uint32_t))((((prop->prop.size))+((__typeof__((prop->prop.size)))( (sizeof(uint32_t)))-1UL))&~((__typeof__((prop->prop.size )))((sizeof(uint32_t)))-1UL)); | |||
309 | ||||
310 | /* Property name. */ | |||
311 | *strings_size += strlen(prop->prop.name) + 1; | |||
312 | } | |||
313 | ||||
314 | static void dt_flat_node_size(struct device_tree_node *node, | |||
315 | uint32_t *struct_size, uint32_t *strings_size) | |||
316 | { | |||
317 | /* Starting token. */ | |||
318 | *struct_size += sizeof(uint32_t); | |||
319 | /* Node name. */ | |||
320 | *struct_size += ALIGN_UP(strlen(node->name) + 1, sizeof(uint32_t))((((strlen(node->name) + 1))+((__typeof__((strlen(node-> name) + 1)))((sizeof(uint32_t)))-1UL))&~((__typeof__((strlen (node->name) + 1)))((sizeof(uint32_t)))-1UL)); | |||
321 | ||||
322 | struct device_tree_property *prop; | |||
323 | list_for_each(prop, node->properties, list_node)for ((prop) = ({ const __typeof__(((typeof(*(prop)) *)0)-> list_node) *__mptr = ((node->properties).next); (typeof(*( prop)) *)((char *)__mptr - __builtin_offsetof(typeof(*(prop)) , list_node)); }); (uintptr_t)prop + (uintptr_t)__builtin_offsetof (typeof(*(prop)), list_node); (prop) = ({ const __typeof__((( typeof(*(prop)) *)0)->list_node) *__mptr = ((prop)->list_node .next); (typeof(*(prop)) *)((char *)__mptr - __builtin_offsetof (typeof(*(prop)), list_node)); })) | |||
324 | dt_flat_prop_size(prop, struct_size, strings_size); | |||
325 | ||||
326 | struct device_tree_node *child; | |||
327 | list_for_each(child, node->children, list_node)for ((child) = ({ const __typeof__(((typeof(*(child)) *)0)-> list_node) *__mptr = ((node->children).next); (typeof(*(child )) *)((char *)__mptr - __builtin_offsetof(typeof(*(child)), list_node )); }); (uintptr_t)child + (uintptr_t)__builtin_offsetof(typeof (*(child)), list_node); (child) = ({ const __typeof__(((typeof (*(child)) *)0)->list_node) *__mptr = ((child)->list_node .next); (typeof(*(child)) *)((char *)__mptr - __builtin_offsetof (typeof(*(child)), list_node)); })) | |||
328 | dt_flat_node_size(child, struct_size, strings_size); | |||
329 | ||||
330 | /* End token. */ | |||
331 | *struct_size += sizeof(uint32_t); | |||
332 | } | |||
333 | ||||
334 | uint32_t dt_flat_size(const struct device_tree *tree) | |||
335 | { | |||
336 | uint32_t size = tree->header_size; | |||
337 | struct device_tree_reserve_map_entry *entry; | |||
338 | list_for_each(entry, tree->reserve_map, list_node)for ((entry) = ({ const __typeof__(((typeof(*(entry)) *)0)-> list_node) *__mptr = ((tree->reserve_map).next); (typeof(* (entry)) *)((char *)__mptr - __builtin_offsetof(typeof(*(entry )), list_node)); }); (uintptr_t)entry + (uintptr_t)__builtin_offsetof (typeof(*(entry)), list_node); (entry) = ({ const __typeof__( ((typeof(*(entry)) *)0)->list_node) *__mptr = ((entry)-> list_node.next); (typeof(*(entry)) *)((char *)__mptr - __builtin_offsetof (typeof(*(entry)), list_node)); })) | |||
339 | size += sizeof(uint64_t) * 2; | |||
340 | size += sizeof(uint64_t) * 2; | |||
341 | ||||
342 | uint32_t struct_size = 0; | |||
343 | uint32_t strings_size = 0; | |||
344 | dt_flat_node_size(tree->root, &struct_size, &strings_size); | |||
345 | ||||
346 | size += struct_size; | |||
347 | /* End token. */ | |||
348 | size += sizeof(uint32_t); | |||
349 | ||||
350 | size += strings_size; | |||
351 | ||||
352 | return size; | |||
353 | } | |||
354 | ||||
355 | ||||
356 | ||||
357 | /* | |||
358 | * Functions to flatten a device tree. | |||
359 | */ | |||
360 | ||||
361 | static void dt_flatten_map_entry(struct device_tree_reserve_map_entry *entry, | |||
362 | void **map_start) | |||
363 | { | |||
364 | ((uint64_t *)*map_start)[0] = htobe64(entry->start); | |||
365 | ((uint64_t *)*map_start)[1] = htobe64(entry->size); | |||
366 | *map_start = ((uint8_t *)*map_start) + sizeof(uint64_t) * 2; | |||
367 | } | |||
368 | ||||
369 | static void dt_flatten_prop(struct device_tree_property *prop, | |||
370 | void **struct_start, void *strings_base, | |||
371 | void **strings_start) | |||
372 | { | |||
373 | uint8_t *dstruct = (uint8_t *)*struct_start; | |||
374 | uint8_t *dstrings = (uint8_t *)*strings_start; | |||
375 | ||||
376 | be32enc(dstruct, FDT_TOKEN_PROPERTY3); | |||
377 | dstruct += sizeof(uint32_t); | |||
378 | ||||
379 | be32enc(dstruct, prop->prop.size); | |||
380 | dstruct += sizeof(uint32_t); | |||
381 | ||||
382 | uint32_t name_offset = (uintptr_t)dstrings - (uintptr_t)strings_base; | |||
383 | be32enc(dstruct, name_offset); | |||
384 | dstruct += sizeof(uint32_t); | |||
385 | ||||
386 | strcpy((char *)dstrings, prop->prop.name); | |||
387 | dstrings += strlen(prop->prop.name) + 1; | |||
388 | ||||
389 | memcpy(dstruct, prop->prop.data, prop->prop.size); | |||
390 | dstruct += ALIGN_UP(prop->prop.size, sizeof(uint32_t))((((prop->prop.size))+((__typeof__((prop->prop.size)))( (sizeof(uint32_t)))-1UL))&~((__typeof__((prop->prop.size )))((sizeof(uint32_t)))-1UL)); | |||
391 | ||||
392 | *struct_start = dstruct; | |||
393 | *strings_start = dstrings; | |||
394 | } | |||
395 | ||||
396 | static void dt_flatten_node(const struct device_tree_node *node, | |||
397 | void **struct_start, void *strings_base, | |||
398 | void **strings_start) | |||
399 | { | |||
400 | uint8_t *dstruct = (uint8_t *)*struct_start; | |||
401 | uint8_t *dstrings = (uint8_t *)*strings_start; | |||
402 | ||||
403 | be32enc(dstruct, FDT_TOKEN_BEGIN_NODE1); | |||
404 | dstruct += sizeof(uint32_t); | |||
405 | ||||
406 | strcpy((char *)dstruct, node->name); | |||
407 | dstruct += ALIGN_UP(strlen(node->name) + 1, sizeof(uint32_t))((((strlen(node->name) + 1))+((__typeof__((strlen(node-> name) + 1)))((sizeof(uint32_t)))-1UL))&~((__typeof__((strlen (node->name) + 1)))((sizeof(uint32_t)))-1UL)); | |||
408 | ||||
409 | struct device_tree_property *prop; | |||
410 | list_for_each(prop, node->properties, list_node)for ((prop) = ({ const __typeof__(((typeof(*(prop)) *)0)-> list_node) *__mptr = ((node->properties).next); (typeof(*( prop)) *)((char *)__mptr - __builtin_offsetof(typeof(*(prop)) , list_node)); }); (uintptr_t)prop + (uintptr_t)__builtin_offsetof (typeof(*(prop)), list_node); (prop) = ({ const __typeof__((( typeof(*(prop)) *)0)->list_node) *__mptr = ((prop)->list_node .next); (typeof(*(prop)) *)((char *)__mptr - __builtin_offsetof (typeof(*(prop)), list_node)); })) | |||
411 | dt_flatten_prop(prop, (void **)&dstruct, strings_base, | |||
412 | (void **)&dstrings); | |||
413 | ||||
414 | struct device_tree_node *child; | |||
415 | list_for_each(child, node->children, list_node)for ((child) = ({ const __typeof__(((typeof(*(child)) *)0)-> list_node) *__mptr = ((node->children).next); (typeof(*(child )) *)((char *)__mptr - __builtin_offsetof(typeof(*(child)), list_node )); }); (uintptr_t)child + (uintptr_t)__builtin_offsetof(typeof (*(child)), list_node); (child) = ({ const __typeof__(((typeof (*(child)) *)0)->list_node) *__mptr = ((child)->list_node .next); (typeof(*(child)) *)((char *)__mptr - __builtin_offsetof (typeof(*(child)), list_node)); })) | |||
416 | dt_flatten_node(child, (void **)&dstruct, strings_base, | |||
417 | (void **)&dstrings); | |||
418 | ||||
419 | be32enc(dstruct, FDT_TOKEN_END_NODE2); | |||
420 | dstruct += sizeof(uint32_t); | |||
421 | ||||
422 | *struct_start = dstruct; | |||
423 | *strings_start = dstrings; | |||
424 | } | |||
425 | ||||
426 | void dt_flatten(const struct device_tree *tree, void *start_dest) | |||
427 | { | |||
428 | uint8_t *dest = (uint8_t *)start_dest; | |||
429 | ||||
430 | memcpy(dest, tree->header, tree->header_size); | |||
431 | struct fdt_header *header = (struct fdt_header *)dest; | |||
432 | dest += tree->header_size; | |||
433 | ||||
434 | struct device_tree_reserve_map_entry *entry; | |||
435 | list_for_each(entry, tree->reserve_map, list_node)for ((entry) = ({ const __typeof__(((typeof(*(entry)) *)0)-> list_node) *__mptr = ((tree->reserve_map).next); (typeof(* (entry)) *)((char *)__mptr - __builtin_offsetof(typeof(*(entry )), list_node)); }); (uintptr_t)entry + (uintptr_t)__builtin_offsetof (typeof(*(entry)), list_node); (entry) = ({ const __typeof__( ((typeof(*(entry)) *)0)->list_node) *__mptr = ((entry)-> list_node.next); (typeof(*(entry)) *)((char *)__mptr - __builtin_offsetof (typeof(*(entry)), list_node)); })) | |||
436 | dt_flatten_map_entry(entry, (void **)&dest); | |||
437 | ((uint64_t *)dest)[0] = ((uint64_t *)dest)[1] = 0; | |||
438 | dest += sizeof(uint64_t) * 2; | |||
439 | ||||
440 | uint32_t struct_size = 0; | |||
441 | uint32_t strings_size = 0; | |||
442 | dt_flat_node_size(tree->root, &struct_size, &strings_size); | |||
443 | ||||
444 | uint8_t *struct_start = dest; | |||
445 | header->structure_offset = htobe32(dest - (uint8_t *)start_dest); | |||
446 | header->structure_size = htobe32(struct_size); | |||
447 | dest += struct_size; | |||
448 | ||||
449 | *((uint32_t *)dest) = htobe32(FDT_TOKEN_END9); | |||
450 | dest += sizeof(uint32_t); | |||
451 | ||||
452 | uint8_t *strings_start = dest; | |||
453 | header->strings_offset = htobe32(dest - (uint8_t *)start_dest); | |||
454 | header->strings_size = htobe32(strings_size); | |||
455 | dest += strings_size; | |||
456 | ||||
457 | dt_flatten_node(tree->root, (void **)&struct_start, strings_start, | |||
458 | (void **)&strings_start); | |||
459 | ||||
460 | header->totalsize = htobe32(dest - (uint8_t *)start_dest); | |||
461 | } | |||
462 | ||||
463 | ||||
464 | ||||
465 | /* | |||
466 | * Functions for printing a non-flattened device tree. | |||
467 | */ | |||
468 | ||||
469 | static void print_node(const struct device_tree_node *node, int depth) | |||
470 | { | |||
471 | print_indent(depth); | |||
472 | if (depth == 0) /* root node has no name, print a starting slash */ | |||
473 | printk(BIOS_DEBUG7, "/"); | |||
474 | printk(BIOS_DEBUG7, "%s {\n", node->name); | |||
475 | ||||
476 | struct device_tree_property *prop; | |||
477 | list_for_each(prop, node->properties, list_node)for ((prop) = ({ const __typeof__(((typeof(*(prop)) *)0)-> list_node) *__mptr = ((node->properties).next); (typeof(*( prop)) *)((char *)__mptr - __builtin_offsetof(typeof(*(prop)) , list_node)); }); (uintptr_t)prop + (uintptr_t)__builtin_offsetof (typeof(*(prop)), list_node); (prop) = ({ const __typeof__((( typeof(*(prop)) *)0)->list_node) *__mptr = ((prop)->list_node .next); (typeof(*(prop)) *)((char *)__mptr - __builtin_offsetof (typeof(*(prop)), list_node)); })) | |||
478 | print_property(&prop->prop, depth + 1); | |||
479 | ||||
480 | printk(BIOS_DEBUG7, "\n"); /* empty line between props and nodes */ | |||
481 | ||||
482 | struct device_tree_node *child; | |||
483 | list_for_each(child, node->children, list_node)for ((child) = ({ const __typeof__(((typeof(*(child)) *)0)-> list_node) *__mptr = ((node->children).next); (typeof(*(child )) *)((char *)__mptr - __builtin_offsetof(typeof(*(child)), list_node )); }); (uintptr_t)child + (uintptr_t)__builtin_offsetof(typeof (*(child)), list_node); (child) = ({ const __typeof__(((typeof (*(child)) *)0)->list_node) *__mptr = ((child)->list_node .next); (typeof(*(child)) *)((char *)__mptr - __builtin_offsetof (typeof(*(child)), list_node)); })) | |||
484 | print_node(child, depth + 1); | |||
485 | ||||
486 | print_indent(depth); | |||
487 | printk(BIOS_DEBUG7, "};\n"); | |||
488 | } | |||
489 | ||||
490 | void dt_print_node(const struct device_tree_node *node) | |||
491 | { | |||
492 | print_node(node, 0); | |||
493 | } | |||
494 | ||||
495 | ||||
496 | ||||
497 | /* | |||
498 | * Functions for reading and manipulating an unflattened device tree. | |||
499 | */ | |||
500 | ||||
501 | /* | |||
502 | * Read #address-cells and #size-cells properties from a node. | |||
503 | * | |||
504 | * @param node The device tree node to read from. | |||
505 | * @param addrcp Pointer to store #address-cells in, skipped if NULL. | |||
506 | * @param sizecp Pointer to store #size-cells in, skipped if NULL. | |||
507 | */ | |||
508 | void dt_read_cell_props(const struct device_tree_node *node, u32 *addrcp, | |||
509 | u32 *sizecp) | |||
510 | { | |||
511 | struct device_tree_property *prop; | |||
512 | list_for_each(prop, node->properties, list_node)for ((prop) = ({ const __typeof__(((typeof(*(prop)) *)0)-> list_node) *__mptr = ((node->properties).next); (typeof(*( prop)) *)((char *)__mptr - __builtin_offsetof(typeof(*(prop)) , list_node)); }); (uintptr_t)prop + (uintptr_t)__builtin_offsetof (typeof(*(prop)), list_node); (prop) = ({ const __typeof__((( typeof(*(prop)) *)0)->list_node) *__mptr = ((prop)->list_node .next); (typeof(*(prop)) *)((char *)__mptr - __builtin_offsetof (typeof(*(prop)), list_node)); })) { | |||
513 | if (addrcp && !strcmp("#address-cells", prop->prop.name)) | |||
514 | *addrcp = be32dec(prop->prop.data); | |||
515 | if (sizecp && !strcmp("#size-cells", prop->prop.name)) | |||
516 | *sizecp = be32dec(prop->prop.data); | |||
517 | } | |||
518 | } | |||
519 | ||||
520 | /* | |||
521 | * Find a node from a device tree path, relative to a parent node. | |||
522 | * | |||
523 | * @param parent The node from which to start the relative path lookup. | |||
524 | * @param path An array of path component strings that will be looked | |||
525 | * up in order to find the node. Must be terminated with | |||
526 | * a NULL pointer. Example: {'firmware', 'coreboot', NULL} | |||
527 | * @param addrcp Pointer that will be updated with any #address-cells | |||
528 | * value found in the path. May be NULL to ignore. | |||
529 | * @param sizecp Pointer that will be updated with any #size-cells | |||
530 | * value found in the path. May be NULL to ignore. | |||
531 | * @param create 1: Create node(s) if not found. 0: Return NULL instead. | |||
532 | * @return The found/created node, or NULL. | |||
533 | */ | |||
534 | struct device_tree_node *dt_find_node(struct device_tree_node *parent, | |||
535 | const char **path, u32 *addrcp, | |||
536 | u32 *sizecp, int create) | |||
537 | { | |||
538 | struct device_tree_node *node, *found = NULL((void *)0); | |||
539 | ||||
540 | /* Update #address-cells and #size-cells for this level. */ | |||
541 | dt_read_cell_props(parent, addrcp, sizecp); | |||
542 | ||||
543 | if (!*path) | |||
544 | return parent; | |||
545 | ||||
546 | /* Find the next node in the path, if it exists. */ | |||
547 | list_for_each(node, parent->children, list_node)for ((node) = ({ const __typeof__(((typeof(*(node)) *)0)-> list_node) *__mptr = ((parent->children).next); (typeof(*( node)) *)((char *)__mptr - __builtin_offsetof(typeof(*(node)) , list_node)); }); (uintptr_t)node + (uintptr_t)__builtin_offsetof (typeof(*(node)), list_node); (node) = ({ const __typeof__((( typeof(*(node)) *)0)->list_node) *__mptr = ((node)->list_node .next); (typeof(*(node)) *)((char *)__mptr - __builtin_offsetof (typeof(*(node)), list_node)); })) { | |||
548 | if (!strcmp(node->name, *path)) { | |||
549 | found = node; | |||
550 | break; | |||
551 | } | |||
552 | } | |||
553 | ||||
554 | /* Otherwise create it or return NULL. */ | |||
555 | if (!found) { | |||
556 | if (!create) | |||
557 | return NULL((void *)0); | |||
558 | ||||
559 | found = calloc(1, sizeof(*found)); | |||
560 | if (!found) | |||
561 | return NULL((void *)0); | |||
562 | found->name = strdup(*path); | |||
563 | if (!found->name) | |||
564 | return NULL((void *)0); | |||
565 | ||||
566 | list_insert_after(&found->list_node, &parent->children); | |||
567 | } | |||
568 | ||||
569 | return dt_find_node(found, path + 1, addrcp, sizecp, create); | |||
570 | } | |||
571 | ||||
572 | /* | |||
573 | * Find a node in the tree from a string device tree path. | |||
574 | * | |||
575 | * @param tree The device tree to search. | |||
576 | * @param path A string representing a path in the device tree, with | |||
577 | * nodes separated by '/'. Example: "/firmware/coreboot" | |||
578 | * @param addrcp Pointer that will be updated with any #address-cells | |||
579 | * value found in the path. May be NULL to ignore. | |||
580 | * @param sizecp Pointer that will be updated with any #size-cells | |||
581 | * value found in the path. May be NULL to ignore. | |||
582 | * @param create 1: Create node(s) if not found. 0: Return NULL instead. | |||
583 | * @return The found/created node, or NULL. | |||
584 | * | |||
585 | * It is the caller responsibility to provide a path string that doesn't end | |||
586 | * with a '/' and doesn't contain any "//". If the path does not start with a | |||
587 | * '/', the first segment is interpreted as an alias. */ | |||
588 | struct device_tree_node *dt_find_node_by_path(struct device_tree *tree, | |||
589 | const char *path, u32 *addrcp, | |||
590 | u32 *sizecp, int create) | |||
591 | { | |||
592 | char *sub_path; | |||
593 | char *duped_str; | |||
594 | struct device_tree_node *parent; | |||
595 | char *next_slash; | |||
596 | /* Hopefully enough depth for any node. */ | |||
597 | const char *path_array[15]; | |||
598 | int i; | |||
599 | struct device_tree_node *node = NULL((void *)0); | |||
600 | ||||
601 | if (path[0] == '/') { /* regular path */ | |||
602 | if (path[1] == '\0') { /* special case: "/" is root node */ | |||
603 | dt_read_cell_props(tree->root, addrcp, sizecp); | |||
604 | return tree->root; | |||
605 | } | |||
606 | ||||
607 | sub_path = duped_str = strdup(&path[1]); | |||
608 | if (!sub_path) | |||
609 | return NULL((void *)0); | |||
610 | ||||
611 | parent = tree->root; | |||
612 | } else { /* alias */ | |||
613 | char *alias; | |||
614 | ||||
615 | alias = duped_str = strdup(path); | |||
616 | if (!alias) | |||
617 | return NULL((void *)0); | |||
618 | ||||
619 | sub_path = strchr(alias, '/'); | |||
620 | if (sub_path) | |||
621 | *sub_path = '\0'; | |||
622 | ||||
623 | parent = dt_find_node_by_alias(tree, alias); | |||
624 | if (!parent) { | |||
625 | printk(BIOS_DEBUG7, | |||
626 | "Could not find node '%s', alias '%s' does not exist\n", | |||
627 | path, alias); | |||
628 | free(duped_str); | |||
629 | return NULL((void *)0); | |||
630 | } | |||
631 | ||||
632 | if (!sub_path) { | |||
633 | /* it's just the alias, no sub-path */ | |||
634 | free(duped_str); | |||
635 | return parent; | |||
636 | } | |||
637 | ||||
638 | sub_path++; | |||
639 | } | |||
640 | ||||
641 | next_slash = sub_path; | |||
642 | path_array[0] = sub_path; | |||
643 | for (i = 1; i < (ARRAY_SIZE(path_array)(sizeof(path_array) / sizeof((path_array)[0])) - 1); i++) { | |||
644 | next_slash = strchr(next_slash, '/'); | |||
645 | if (!next_slash) | |||
646 | break; | |||
647 | ||||
648 | *next_slash++ = '\0'; | |||
649 | path_array[i] = next_slash; | |||
650 | } | |||
651 | ||||
652 | if (!next_slash) { | |||
653 | path_array[i] = NULL((void *)0); | |||
654 | node = dt_find_node(parent, path_array, | |||
655 | addrcp, sizecp, create); | |||
656 | } | |||
657 | ||||
658 | free(duped_str); | |||
659 | return node; | |||
660 | } | |||
661 | ||||
662 | /* | |||
663 | * Find a node from an alias | |||
664 | * | |||
665 | * @param tree The device tree. | |||
666 | * @param alias The alias name. | |||
667 | * @return The found node, or NULL. | |||
668 | */ | |||
669 | struct device_tree_node *dt_find_node_by_alias(struct device_tree *tree, | |||
670 | const char *alias) | |||
671 | { | |||
672 | struct device_tree_node *node; | |||
673 | const char *alias_path; | |||
674 | ||||
675 | node = dt_find_node_by_path(tree, "/aliases", NULL((void *)0), NULL((void *)0), 0); | |||
676 | if (!node) | |||
677 | return NULL((void *)0); | |||
678 | ||||
679 | alias_path = dt_find_string_prop(node, alias); | |||
680 | if (!alias_path) | |||
681 | return NULL((void *)0); | |||
682 | ||||
683 | return dt_find_node_by_path(tree, alias_path, NULL((void *)0), NULL((void *)0), 0); | |||
684 | } | |||
685 | ||||
686 | struct device_tree_node *dt_find_node_by_phandle(struct device_tree_node *root, | |||
687 | uint32_t phandle) | |||
688 | { | |||
689 | if (!root) | |||
690 | return NULL((void *)0); | |||
691 | ||||
692 | if (root->phandle == phandle) | |||
693 | return root; | |||
694 | ||||
695 | struct device_tree_node *node; | |||
696 | struct device_tree_node *result; | |||
697 | list_for_each(node, root->children, list_node)for ((node) = ({ const __typeof__(((typeof(*(node)) *)0)-> list_node) *__mptr = ((root->children).next); (typeof(*(node )) *)((char *)__mptr - __builtin_offsetof(typeof(*(node)), list_node )); }); (uintptr_t)node + (uintptr_t)__builtin_offsetof(typeof (*(node)), list_node); (node) = ({ const __typeof__(((typeof( *(node)) *)0)->list_node) *__mptr = ((node)->list_node. next); (typeof(*(node)) *)((char *)__mptr - __builtin_offsetof (typeof(*(node)), list_node)); })) { | |||
698 | result = dt_find_node_by_phandle(node, phandle); | |||
699 | if (result) | |||
700 | return result; | |||
701 | } | |||
702 | ||||
703 | return NULL((void *)0); | |||
704 | } | |||
705 | ||||
706 | /* | |||
707 | * Check if given node is compatible. | |||
708 | * | |||
709 | * @param node The node which is to be checked for compatible property. | |||
710 | * @param compat The compatible string to match. | |||
711 | * @return 1 = compatible, 0 = not compatible. | |||
712 | */ | |||
713 | static int dt_check_compat_match(struct device_tree_node *node, | |||
714 | const char *compat) | |||
715 | { | |||
716 | struct device_tree_property *prop; | |||
717 | ||||
718 | list_for_each(prop, node->properties, list_node)for ((prop) = ({ const __typeof__(((typeof(*(prop)) *)0)-> list_node) *__mptr = ((node->properties).next); (typeof(*( prop)) *)((char *)__mptr - __builtin_offsetof(typeof(*(prop)) , list_node)); }); (uintptr_t)prop + (uintptr_t)__builtin_offsetof (typeof(*(prop)), list_node); (prop) = ({ const __typeof__((( typeof(*(prop)) *)0)->list_node) *__mptr = ((prop)->list_node .next); (typeof(*(prop)) *)((char *)__mptr - __builtin_offsetof (typeof(*(prop)), list_node)); })) { | |||
719 | if (!strcmp("compatible", prop->prop.name)) { | |||
720 | size_t bytes = prop->prop.size; | |||
721 | const char *str = prop->prop.data; | |||
722 | while (bytes > 0) { | |||
723 | if (!strncmp(compat, str, bytes)) | |||
724 | return 1; | |||
725 | size_t len = strnlen(str, bytes) + 1; | |||
726 | if (bytes <= len) | |||
727 | break; | |||
728 | str += len; | |||
729 | bytes -= len; | |||
730 | } | |||
731 | break; | |||
732 | } | |||
733 | } | |||
734 | ||||
735 | return 0; | |||
736 | } | |||
737 | ||||
738 | /* | |||
739 | * Find a node from a compatible string, in the subtree of a parent node. | |||
740 | * | |||
741 | * @param parent The parent node under which to look. | |||
742 | * @param compat The compatible string to find. | |||
743 | * @return The found node, or NULL. | |||
744 | */ | |||
745 | struct device_tree_node *dt_find_compat(struct device_tree_node *parent, | |||
746 | const char *compat) | |||
747 | { | |||
748 | /* Check if the parent node itself is compatible. */ | |||
749 | if (dt_check_compat_match(parent, compat)) | |||
| ||||
750 | return parent; | |||
751 | ||||
752 | struct device_tree_node *child; | |||
753 | list_for_each(child, parent->children, list_node)for ((child) = ({ const __typeof__(((typeof(*(child)) *)0)-> list_node) *__mptr = ((parent->children).next); (typeof(*( child)) *)((char *)__mptr - __builtin_offsetof(typeof(*(child )), list_node)); }); (uintptr_t)child + (uintptr_t)__builtin_offsetof (typeof(*(child)), list_node); (child) = ({ const __typeof__( ((typeof(*(child)) *)0)->list_node) *__mptr = ((child)-> list_node.next); (typeof(*(child)) *)((char *)__mptr - __builtin_offsetof (typeof(*(child)), list_node)); })) { | |||
| ||||
754 | struct device_tree_node *found = dt_find_compat(child, compat); | |||
755 | if (found) | |||
756 | return found; | |||
757 | } | |||
758 | ||||
759 | return NULL((void *)0); | |||
760 | } | |||
761 | ||||
762 | /* | |||
763 | * Find the next compatible child of a given parent. All children up to the | |||
764 | * child passed in by caller are ignored. If child is NULL, it considers all the | |||
765 | * children to find the first child which is compatible. | |||
766 | * | |||
767 | * @param parent The parent node under which to look. | |||
768 | * @param child The child node to start search from (exclusive). If NULL | |||
769 | * consider all children. | |||
770 | * @param compat The compatible string to find. | |||
771 | * @return The found node, or NULL. | |||
772 | */ | |||
773 | struct device_tree_node * | |||
774 | dt_find_next_compat_child(struct device_tree_node *parent, | |||
775 | struct device_tree_node *child, | |||
776 | const char *compat) | |||
777 | { | |||
778 | struct device_tree_node *next; | |||
779 | int ignore = 0; | |||
780 | ||||
781 | if (child) | |||
782 | ignore = 1; | |||
783 | ||||
784 | list_for_each(next, parent->children, list_node)for ((next) = ({ const __typeof__(((typeof(*(next)) *)0)-> list_node) *__mptr = ((parent->children).next); (typeof(*( next)) *)((char *)__mptr - __builtin_offsetof(typeof(*(next)) , list_node)); }); (uintptr_t)next + (uintptr_t)__builtin_offsetof (typeof(*(next)), list_node); (next) = ({ const __typeof__((( typeof(*(next)) *)0)->list_node) *__mptr = ((next)->list_node .next); (typeof(*(next)) *)((char *)__mptr - __builtin_offsetof (typeof(*(next)), list_node)); })) { | |||
785 | if (ignore) { | |||
786 | if (child == next) | |||
787 | ignore = 0; | |||
788 | continue; | |||
789 | } | |||
790 | ||||
791 | if (dt_check_compat_match(next, compat)) | |||
792 | return next; | |||
793 | } | |||
794 | ||||
795 | return NULL((void *)0); | |||
796 | } | |||
797 | ||||
798 | /* | |||
799 | * Find a node with matching property value, in the subtree of a parent node. | |||
800 | * | |||
801 | * @param parent The parent node under which to look. | |||
802 | * @param name The property name to look for. | |||
803 | * @param data The property value to look for. | |||
804 | * @param size The property size. | |||
805 | */ | |||
806 | struct device_tree_node *dt_find_prop_value(struct device_tree_node *parent, | |||
807 | const char *name, void *data, | |||
808 | size_t size) | |||
809 | { | |||
810 | struct device_tree_property *prop; | |||
811 | ||||
812 | /* Check if parent itself has the required property value. */ | |||
813 | list_for_each(prop, parent->properties, list_node)for ((prop) = ({ const __typeof__(((typeof(*(prop)) *)0)-> list_node) *__mptr = ((parent->properties).next); (typeof( *(prop)) *)((char *)__mptr - __builtin_offsetof(typeof(*(prop )), list_node)); }); (uintptr_t)prop + (uintptr_t)__builtin_offsetof (typeof(*(prop)), list_node); (prop) = ({ const __typeof__((( typeof(*(prop)) *)0)->list_node) *__mptr = ((prop)->list_node .next); (typeof(*(prop)) *)((char *)__mptr - __builtin_offsetof (typeof(*(prop)), list_node)); })) { | |||
814 | if (!strcmp(name, prop->prop.name)) { | |||
815 | size_t bytes = prop->prop.size; | |||
816 | const void *prop_data = prop->prop.data; | |||
817 | if (size != bytes) | |||
818 | break; | |||
819 | if (!memcmp(data, prop_data, size)) | |||
820 | return parent; | |||
821 | break; | |||
822 | } | |||
823 | } | |||
824 | ||||
825 | struct device_tree_node *child; | |||
826 | list_for_each(child, parent->children, list_node)for ((child) = ({ const __typeof__(((typeof(*(child)) *)0)-> list_node) *__mptr = ((parent->children).next); (typeof(*( child)) *)((char *)__mptr - __builtin_offsetof(typeof(*(child )), list_node)); }); (uintptr_t)child + (uintptr_t)__builtin_offsetof (typeof(*(child)), list_node); (child) = ({ const __typeof__( ((typeof(*(child)) *)0)->list_node) *__mptr = ((child)-> list_node.next); (typeof(*(child)) *)((char *)__mptr - __builtin_offsetof (typeof(*(child)), list_node)); })) { | |||
827 | struct device_tree_node *found = dt_find_prop_value(child, name, | |||
828 | data, size); | |||
829 | if (found) | |||
830 | return found; | |||
831 | } | |||
832 | return NULL((void *)0); | |||
833 | } | |||
834 | ||||
835 | /* | |||
836 | * Write an arbitrary sized big-endian integer into a pointer. | |||
837 | * | |||
838 | * @param dest Pointer to the DT property data buffer to write. | |||
839 | * @param src The integer to write (in CPU endianness). | |||
840 | * @param length the length of the destination integer in bytes. | |||
841 | */ | |||
842 | void dt_write_int(u8 *dest, u64 src, size_t length) | |||
843 | { | |||
844 | while (length--) { | |||
845 | dest[length] = (u8)src; | |||
846 | src >>= 8; | |||
847 | } | |||
848 | } | |||
849 | ||||
850 | /* | |||
851 | * Delete a property by name in a given node if it exists. | |||
852 | * | |||
853 | * @param node The device tree node to operate on. | |||
854 | * @param name The name of the property to delete. | |||
855 | */ | |||
856 | void dt_delete_prop(struct device_tree_node *node, const char *name) | |||
857 | { | |||
858 | struct device_tree_property *prop; | |||
859 | ||||
860 | list_for_each(prop, node->properties, list_node)for ((prop) = ({ const __typeof__(((typeof(*(prop)) *)0)-> list_node) *__mptr = ((node->properties).next); (typeof(*( prop)) *)((char *)__mptr - __builtin_offsetof(typeof(*(prop)) , list_node)); }); (uintptr_t)prop + (uintptr_t)__builtin_offsetof (typeof(*(prop)), list_node); (prop) = ({ const __typeof__((( typeof(*(prop)) *)0)->list_node) *__mptr = ((prop)->list_node .next); (typeof(*(prop)) *)((char *)__mptr - __builtin_offsetof (typeof(*(prop)), list_node)); })) { | |||
861 | if (!strcmp(prop->prop.name, name)) { | |||
862 | list_remove(&prop->list_node); | |||
863 | return; | |||
864 | } | |||
865 | } | |||
866 | } | |||
867 | ||||
868 | /* | |||
869 | * Add an arbitrary property to a node, or update it if it already exists. | |||
870 | * | |||
871 | * @param node The device tree node to add to. | |||
872 | * @param name The name of the new property. | |||
873 | * @param data The raw data blob to be stored in the property. | |||
874 | * @param size The size of data in bytes. | |||
875 | */ | |||
876 | void dt_add_bin_prop(struct device_tree_node *node, const char *name, | |||
877 | void *data, size_t size) | |||
878 | { | |||
879 | struct device_tree_property *prop; | |||
880 | ||||
881 | list_for_each(prop, node->properties, list_node)for ((prop) = ({ const __typeof__(((typeof(*(prop)) *)0)-> list_node) *__mptr = ((node->properties).next); (typeof(*( prop)) *)((char *)__mptr - __builtin_offsetof(typeof(*(prop)) , list_node)); }); (uintptr_t)prop + (uintptr_t)__builtin_offsetof (typeof(*(prop)), list_node); (prop) = ({ const __typeof__((( typeof(*(prop)) *)0)->list_node) *__mptr = ((prop)->list_node .next); (typeof(*(prop)) *)((char *)__mptr - __builtin_offsetof (typeof(*(prop)), list_node)); })) { | |||
882 | if (!strcmp(prop->prop.name, name)) { | |||
883 | prop->prop.data = data; | |||
884 | prop->prop.size = size; | |||
885 | return; | |||
886 | } | |||
887 | } | |||
888 | ||||
889 | prop = xzalloc(sizeof(*prop))xzalloc_work((sizeof(*prop)), "src/lib/device_tree.c", __func__ , 889); | |||
890 | list_insert_after(&prop->list_node, &node->properties); | |||
891 | prop->prop.name = name; | |||
892 | prop->prop.data = data; | |||
893 | prop->prop.size = size; | |||
894 | } | |||
895 | ||||
896 | /* | |||
897 | * Find given string property in a node and return its content. | |||
898 | * | |||
899 | * @param node The device tree node to search. | |||
900 | * @param name The name of the property. | |||
901 | * @return The found string, or NULL. | |||
902 | */ | |||
903 | const char *dt_find_string_prop(const struct device_tree_node *node, | |||
904 | const char *name) | |||
905 | { | |||
906 | const void *content; | |||
907 | size_t size; | |||
908 | ||||
909 | dt_find_bin_prop(node, name, &content, &size); | |||
910 | ||||
911 | return content; | |||
912 | } | |||
913 | ||||
914 | /* | |||
915 | * Find given property in a node. | |||
916 | * | |||
917 | * @param node The device tree node to search. | |||
918 | * @param name The name of the property. | |||
919 | * @param data Pointer to return raw data blob in the property. | |||
920 | * @param size Pointer to return the size of data in bytes. | |||
921 | */ | |||
922 | void dt_find_bin_prop(const struct device_tree_node *node, const char *name, | |||
923 | const void **data, size_t *size) | |||
924 | { | |||
925 | struct device_tree_property *prop; | |||
926 | ||||
927 | *data = NULL((void *)0); | |||
928 | *size = 0; | |||
929 | ||||
930 | list_for_each(prop, node->properties, list_node)for ((prop) = ({ const __typeof__(((typeof(*(prop)) *)0)-> list_node) *__mptr = ((node->properties).next); (typeof(*( prop)) *)((char *)__mptr - __builtin_offsetof(typeof(*(prop)) , list_node)); }); (uintptr_t)prop + (uintptr_t)__builtin_offsetof (typeof(*(prop)), list_node); (prop) = ({ const __typeof__((( typeof(*(prop)) *)0)->list_node) *__mptr = ((prop)->list_node .next); (typeof(*(prop)) *)((char *)__mptr - __builtin_offsetof (typeof(*(prop)), list_node)); })) { | |||
931 | if (!strcmp(prop->prop.name, name)) { | |||
932 | *data = prop->prop.data; | |||
933 | *size = prop->prop.size; | |||
934 | return; | |||
935 | } | |||
936 | } | |||
937 | } | |||
938 | ||||
939 | /* | |||
940 | * Add a string property to a node, or update it if it already exists. | |||
941 | * | |||
942 | * @param node The device tree node to add to. | |||
943 | * @param name The name of the new property. | |||
944 | * @param str The zero-terminated string to be stored in the property. | |||
945 | */ | |||
946 | void dt_add_string_prop(struct device_tree_node *node, const char *name, | |||
947 | const char *str) | |||
948 | { | |||
949 | dt_add_bin_prop(node, name, (char *)str, strlen(str) + 1); | |||
950 | } | |||
951 | ||||
952 | /* | |||
953 | * Add a 32-bit integer property to a node, or update it if it already exists. | |||
954 | * | |||
955 | * @param node The device tree node to add to. | |||
956 | * @param name The name of the new property. | |||
957 | * @param val The integer to be stored in the property. | |||
958 | */ | |||
959 | void dt_add_u32_prop(struct device_tree_node *node, const char *name, u32 val) | |||
960 | { | |||
961 | u32 *val_ptr = xmalloc(sizeof(val))xmalloc_work((sizeof(val)), "src/lib/device_tree.c", __func__ , 961); | |||
962 | *val_ptr = htobe32(val); | |||
963 | dt_add_bin_prop(node, name, val_ptr, sizeof(*val_ptr)); | |||
964 | } | |||
965 | ||||
966 | /* | |||
967 | * Add a 64-bit integer property to a node, or update it if it already exists. | |||
968 | * | |||
969 | * @param node The device tree node to add to. | |||
970 | * @param name The name of the new property. | |||
971 | * @param val The integer to be stored in the property. | |||
972 | */ | |||
973 | void dt_add_u64_prop(struct device_tree_node *node, const char *name, u64 val) | |||
974 | { | |||
975 | u64 *val_ptr = xmalloc(sizeof(val))xmalloc_work((sizeof(val)), "src/lib/device_tree.c", __func__ , 975); | |||
976 | *val_ptr = htobe64(val); | |||
977 | dt_add_bin_prop(node, name, val_ptr, sizeof(*val_ptr)); | |||
978 | } | |||
979 | ||||
980 | /* | |||
981 | * Add a 'reg' address list property to a node, or update it if it exists. | |||
982 | * | |||
983 | * @param node The device tree node to add to. | |||
984 | * @param addrs Array of address values to be stored in the property. | |||
985 | * @param sizes Array of corresponding size values to 'addrs'. | |||
986 | * @param count Number of values in 'addrs' and 'sizes' (must be equal). | |||
987 | * @param addr_cells Value of #address-cells property valid for this node. | |||
988 | * @param size_cells Value of #size-cells property valid for this node. | |||
989 | */ | |||
990 | void dt_add_reg_prop(struct device_tree_node *node, u64 *addrs, u64 *sizes, | |||
991 | int count, u32 addr_cells, u32 size_cells) | |||
992 | { | |||
993 | int i; | |||
994 | size_t length = (addr_cells + size_cells) * sizeof(u32) * count; | |||
995 | u8 *data = xmalloc(length)xmalloc_work((length), "src/lib/device_tree.c", __func__, 995 ); | |||
996 | u8 *cur = data; | |||
997 | ||||
998 | for (i = 0; i < count; i++) { | |||
999 | dt_write_int(cur, addrs[i], addr_cells * sizeof(u32)); | |||
1000 | cur += addr_cells * sizeof(u32); | |||
1001 | dt_write_int(cur, sizes[i], size_cells * sizeof(u32)); | |||
1002 | cur += size_cells * sizeof(u32); | |||
1003 | } | |||
1004 | ||||
1005 | dt_add_bin_prop(node, "reg", data, length); | |||
1006 | } | |||
1007 | ||||
1008 | /* | |||
1009 | * Fixups to apply to a kernel's device tree before booting it. | |||
1010 | */ | |||
1011 | ||||
1012 | struct list_node device_tree_fixups; | |||
1013 | ||||
1014 | int dt_apply_fixups(struct device_tree *tree) | |||
1015 | { | |||
1016 | struct device_tree_fixup *fixup; | |||
1017 | list_for_each(fixup, device_tree_fixups, list_node)for ((fixup) = ({ const __typeof__(((typeof(*(fixup)) *)0)-> list_node) *__mptr = ((device_tree_fixups).next); (typeof(*(fixup )) *)((char *)__mptr - __builtin_offsetof(typeof(*(fixup)), list_node )); }); (uintptr_t)fixup + (uintptr_t)__builtin_offsetof(typeof (*(fixup)), list_node); (fixup) = ({ const __typeof__(((typeof (*(fixup)) *)0)->list_node) *__mptr = ((fixup)->list_node .next); (typeof(*(fixup)) *)((char *)__mptr - __builtin_offsetof (typeof(*(fixup)), list_node)); })) { | |||
1018 | assert(fixup->fixup){ if (!(__builtin_constant_p(fixup->fixup) ? ((fixup->fixup ) ? 1 : ({ _dead_code_assertion_failed(); *(int *)(uintptr_t) 0; })) : 0) && !(fixup->fixup)) { printk(0, "ASSERTION ERROR: file '%s', line %d\n" , "(filenames not available on timeless builds)", 404); ; if ( 1) hlt(); } }; | |||
1019 | if (fixup->fixup(fixup, tree)) | |||
1020 | return 1; | |||
1021 | } | |||
1022 | return 0; | |||
1023 | } | |||
1024 | ||||
1025 | int dt_set_bin_prop_by_path(struct device_tree *tree, const char *path, | |||
1026 | void *data, size_t data_size, int create) | |||
1027 | { | |||
1028 | char *path_copy, *prop_name; | |||
1029 | struct device_tree_node *dt_node; | |||
1030 | ||||
1031 | path_copy = strdup(path); | |||
1032 | ||||
1033 | if (!path_copy) { | |||
1034 | printk(BIOS_ERR3, "Failed to allocate a copy of path %s\n", | |||
1035 | path); | |||
1036 | return 1; | |||
1037 | } | |||
1038 | ||||
1039 | prop_name = strrchr(path_copy, '/'); | |||
1040 | if (!prop_name) { | |||
1041 | free(path_copy); | |||
1042 | printk(BIOS_ERR3, "Path %s does not include '/'\n", path); | |||
1043 | return 1; | |||
1044 | } | |||
1045 | ||||
1046 | *prop_name++ = '\0'; /* Separate path from the property name. */ | |||
1047 | ||||
1048 | dt_node = dt_find_node_by_path(tree, path_copy, NULL((void *)0), | |||
1049 | NULL((void *)0), create); | |||
1050 | ||||
1051 | if (!dt_node) { | |||
1052 | printk(BIOS_ERR3, "Failed to %s %s in the device tree\n", | |||
1053 | create ? "create" : "find", path_copy); | |||
1054 | free(path_copy); | |||
1055 | return 1; | |||
1056 | } | |||
1057 | ||||
1058 | dt_add_bin_prop(dt_node, prop_name, data, data_size); | |||
1059 | free(path_copy); | |||
1060 | ||||
1061 | return 0; | |||
1062 | } | |||
1063 | ||||
1064 | /* | |||
1065 | * Prepare the /reserved-memory/ node. | |||
1066 | * | |||
1067 | * Technically, this can be called more than one time, to init and/or retrieve | |||
1068 | * the node. But dt_add_u32_prop() may leak a bit of memory if you do. | |||
1069 | * | |||
1070 | * @tree: Device tree to add/retrieve from. | |||
1071 | * @return: The /reserved-memory/ node (or NULL, if error). | |||
1072 | */ | |||
1073 | struct device_tree_node *dt_init_reserved_memory_node(struct device_tree *tree) | |||
1074 | { | |||
1075 | struct device_tree_node *reserved; | |||
1076 | u32 addr = 0, size = 0; | |||
1077 | ||||
1078 | reserved = dt_find_node_by_path(tree, "/reserved-memory", &addr, | |||
1079 | &size, 1); | |||
1080 | if (!reserved) | |||
1081 | return NULL((void *)0); | |||
1082 | ||||
1083 | /* Binding doc says this should have the same #{address,size}-cells as | |||
1084 | the root. */ | |||
1085 | dt_add_u32_prop(reserved, "#address-cells", addr); | |||
1086 | dt_add_u32_prop(reserved, "#size-cells", size); | |||
1087 | /* Binding doc says this should be empty (1:1 mapping from root). */ | |||
1088 | dt_add_bin_prop(reserved, "ranges", NULL((void *)0), 0); | |||
1089 | ||||
1090 | return reserved; | |||
1091 | } | |||
1092 | ||||
1093 | /* | |||
1094 | * Increment a single phandle in prop at a given offset by a given adjustment. | |||
1095 | * | |||
1096 | * @param prop Property whose phandle should be adjusted. | |||
1097 | * @param adjustment Value that should be added to the existing phandle. | |||
1098 | * @param offset Byte offset of the phandle in the property data. | |||
1099 | * | |||
1100 | * @return New phandle value, or 0 on error. | |||
1101 | */ | |||
1102 | static uint32_t dt_adjust_phandle(struct device_tree_property *prop, | |||
1103 | uint32_t adjustment, uint32_t offset) | |||
1104 | { | |||
1105 | if (offset + 4 > prop->prop.size) | |||
1106 | return 0; | |||
1107 | ||||
1108 | uint32_t phandle = be32dec(prop->prop.data + offset); | |||
1109 | if (phandle == 0 || | |||
1110 | phandle == FDT_PHANDLE_ILLEGAL0xdeadbeef || | |||
1111 | phandle == 0xffffffff) | |||
1112 | return 0; | |||
1113 | ||||
1114 | phandle += adjustment; | |||
1115 | if (phandle >= FDT_PHANDLE_ILLEGAL0xdeadbeef) | |||
1116 | return 0; | |||
1117 | ||||
1118 | be32enc(prop->prop.data + offset, phandle); | |||
1119 | return phandle; | |||
1120 | } | |||
1121 | ||||
1122 | /* | |||
1123 | * Adjust all phandles in subtree by adding a new base offset. | |||
1124 | * | |||
1125 | * @param node Root node of the subtree to work on. | |||
1126 | * @param base New phandle base to be added to all phandles. | |||
1127 | * | |||
1128 | * @return New highest phandle in the subtree, or 0 on error. | |||
1129 | */ | |||
1130 | static uint32_t dt_adjust_all_phandles(struct device_tree_node *node, | |||
1131 | uint32_t base) | |||
1132 | { | |||
1133 | uint32_t new_max = MAX(base, 1)__builtin_choose_expr( __builtin_constant_p(base) && __builtin_constant_p (1), ((base) > (1) ? (base) : (1)), ({ __typeof__( __builtin_choose_expr (__builtin_constant_p(base), 1, base)) __tmpname_36 = (base); __typeof__( __builtin_choose_expr(__builtin_constant_p(1), base , 1)) __tmpname_37 = (1); __tmpname_36 > __tmpname_37 ? __tmpname_36 : __tmpname_37; })); /* make sure we don't return 0 */ | |||
1134 | struct device_tree_property *prop; | |||
1135 | struct device_tree_node *child; | |||
1136 | ||||
1137 | if (!node) | |||
1138 | return new_max; | |||
1139 | ||||
1140 | list_for_each(prop, node->properties, list_node)for ((prop) = ({ const __typeof__(((typeof(*(prop)) *)0)-> list_node) *__mptr = ((node->properties).next); (typeof(*( prop)) *)((char *)__mptr - __builtin_offsetof(typeof(*(prop)) , list_node)); }); (uintptr_t)prop + (uintptr_t)__builtin_offsetof (typeof(*(prop)), list_node); (prop) = ({ const __typeof__((( typeof(*(prop)) *)0)->list_node) *__mptr = ((prop)->list_node .next); (typeof(*(prop)) *)((char *)__mptr - __builtin_offsetof (typeof(*(prop)), list_node)); })) | |||
1141 | if (dt_prop_is_phandle(prop)) { | |||
1142 | node->phandle = dt_adjust_phandle(prop, base, 0); | |||
1143 | if (!node->phandle) | |||
1144 | return 0; | |||
1145 | new_max = MAX(new_max, node->phandle)__builtin_choose_expr( __builtin_constant_p(new_max) && __builtin_constant_p(node->phandle), ((new_max) > (node ->phandle) ? (new_max) : (node->phandle)), ({ __typeof__ ( __builtin_choose_expr(__builtin_constant_p(new_max), node-> phandle, new_max)) __tmpname_38 = (new_max); __typeof__( __builtin_choose_expr (__builtin_constant_p(node->phandle), new_max, node->phandle )) __tmpname_39 = (node->phandle); __tmpname_38 > __tmpname_39 ? __tmpname_38 : __tmpname_39; })); | |||
1146 | } /* no break -- can have more than one phandle prop */ | |||
1147 | ||||
1148 | list_for_each(child, node->children, list_node)for ((child) = ({ const __typeof__(((typeof(*(child)) *)0)-> list_node) *__mptr = ((node->children).next); (typeof(*(child )) *)((char *)__mptr - __builtin_offsetof(typeof(*(child)), list_node )); }); (uintptr_t)child + (uintptr_t)__builtin_offsetof(typeof (*(child)), list_node); (child) = ({ const __typeof__(((typeof (*(child)) *)0)->list_node) *__mptr = ((child)->list_node .next); (typeof(*(child)) *)((char *)__mptr - __builtin_offsetof (typeof(*(child)), list_node)); })) | |||
1149 | new_max = MAX(new_max, dt_adjust_all_phandles(child, base))__builtin_choose_expr( __builtin_constant_p(new_max) && __builtin_constant_p(dt_adjust_all_phandles(child, base)), ( (new_max) > (dt_adjust_all_phandles(child, base)) ? (new_max ) : (dt_adjust_all_phandles(child, base))), ({ __typeof__( __builtin_choose_expr (__builtin_constant_p(new_max), dt_adjust_all_phandles(child, base), new_max)) __tmpname_40 = (new_max); __typeof__( __builtin_choose_expr (__builtin_constant_p(dt_adjust_all_phandles(child, base)), new_max , dt_adjust_all_phandles(child, base))) __tmpname_41 = (dt_adjust_all_phandles (child, base)); __tmpname_40 > __tmpname_41 ? __tmpname_40 : __tmpname_41; })); | |||
1150 | ||||
1151 | return new_max; | |||
1152 | } | |||
1153 | ||||
1154 | /* | |||
1155 | * Apply a /__local_fixup__ subtree to the corresponding overlay subtree. | |||
1156 | * | |||
1157 | * @param node Root node of the overlay subtree to fix up. | |||
1158 | * @param node Root node of the /__local_fixup__ subtree. | |||
1159 | * @param base Adjustment that was added to phandles in the overlay. | |||
1160 | * | |||
1161 | * @return 0 on success, -1 on error. | |||
1162 | */ | |||
1163 | static int dt_fixup_locals(struct device_tree_node *node, | |||
1164 | struct device_tree_node *fixup, uint32_t base) | |||
1165 | { | |||
1166 | struct device_tree_property *prop; | |||
1167 | struct device_tree_property *fixup_prop; | |||
1168 | struct device_tree_node *child; | |||
1169 | struct device_tree_node *fixup_child; | |||
1170 | int i; | |||
1171 | ||||
1172 | /* | |||
1173 | * For local fixups the /__local_fixup__ subtree contains the same node | |||
1174 | * hierarchy as the main tree we're fixing up. Each property contains | |||
1175 | * the fixup offsets for the respective property in the main tree. For | |||
1176 | * each property in the fixup node, find the corresponding property in | |||
1177 | * the base node and apply fixups to all offsets it specifies. | |||
1178 | */ | |||
1179 | list_for_each(fixup_prop, fixup->properties, list_node)for ((fixup_prop) = ({ const __typeof__(((typeof(*(fixup_prop )) *)0)->list_node) *__mptr = ((fixup->properties).next ); (typeof(*(fixup_prop)) *)((char *)__mptr - __builtin_offsetof (typeof(*(fixup_prop)), list_node)); }); (uintptr_t)fixup_prop + (uintptr_t)__builtin_offsetof(typeof(*(fixup_prop)), list_node ); (fixup_prop) = ({ const __typeof__(((typeof(*(fixup_prop)) *)0)->list_node) *__mptr = ((fixup_prop)->list_node.next ); (typeof(*(fixup_prop)) *)((char *)__mptr - __builtin_offsetof (typeof(*(fixup_prop)), list_node)); })) { | |||
1180 | struct device_tree_property *base_prop = NULL((void *)0); | |||
1181 | list_for_each(prop, node->properties, list_node)for ((prop) = ({ const __typeof__(((typeof(*(prop)) *)0)-> list_node) *__mptr = ((node->properties).next); (typeof(*( prop)) *)((char *)__mptr - __builtin_offsetof(typeof(*(prop)) , list_node)); }); (uintptr_t)prop + (uintptr_t)__builtin_offsetof (typeof(*(prop)), list_node); (prop) = ({ const __typeof__((( typeof(*(prop)) *)0)->list_node) *__mptr = ((prop)->list_node .next); (typeof(*(prop)) *)((char *)__mptr - __builtin_offsetof (typeof(*(prop)), list_node)); })) | |||
1182 | if (!strcmp(prop->prop.name, fixup_prop->prop.name)) { | |||
1183 | base_prop = prop; | |||
1184 | break; | |||
1185 | } | |||
1186 | ||||
1187 | /* We should always find a corresponding base prop for a fixup, | |||
1188 | and fixup props contain a list of 32-bit fixup offsets. */ | |||
1189 | if (!base_prop || fixup_prop->prop.size % sizeof(uint32_t)) | |||
1190 | return -1; | |||
1191 | ||||
1192 | for (i = 0; i < fixup_prop->prop.size; i += sizeof(uint32_t)) | |||
1193 | if (!dt_adjust_phandle(base_prop, base, be32dec( | |||
1194 | fixup_prop->prop.data + i))) | |||
1195 | return -1; | |||
1196 | } | |||
1197 | ||||
1198 | /* Now recursively descend both the base tree and the /__local_fixups__ | |||
1199 | subtree in sync to apply all fixups. */ | |||
1200 | list_for_each(fixup_child, fixup->children, list_node)for ((fixup_child) = ({ const __typeof__(((typeof(*(fixup_child )) *)0)->list_node) *__mptr = ((fixup->children).next); (typeof(*(fixup_child)) *)((char *)__mptr - __builtin_offsetof (typeof(*(fixup_child)), list_node)); }); (uintptr_t)fixup_child + (uintptr_t)__builtin_offsetof(typeof(*(fixup_child)), list_node ); (fixup_child) = ({ const __typeof__(((typeof(*(fixup_child )) *)0)->list_node) *__mptr = ((fixup_child)->list_node .next); (typeof(*(fixup_child)) *)((char *)__mptr - __builtin_offsetof (typeof(*(fixup_child)), list_node)); })) { | |||
1201 | struct device_tree_node *base_child = NULL((void *)0); | |||
1202 | list_for_each(child, node->children, list_node)for ((child) = ({ const __typeof__(((typeof(*(child)) *)0)-> list_node) *__mptr = ((node->children).next); (typeof(*(child )) *)((char *)__mptr - __builtin_offsetof(typeof(*(child)), list_node )); }); (uintptr_t)child + (uintptr_t)__builtin_offsetof(typeof (*(child)), list_node); (child) = ({ const __typeof__(((typeof (*(child)) *)0)->list_node) *__mptr = ((child)->list_node .next); (typeof(*(child)) *)((char *)__mptr - __builtin_offsetof (typeof(*(child)), list_node)); })) | |||
1203 | if (!strcmp(child->name, fixup_child->name)) { | |||
1204 | base_child = child; | |||
1205 | break; | |||
1206 | } | |||
1207 | ||||
1208 | /* All fixup nodes should have a corresponding base node. */ | |||
1209 | if (!base_child) | |||
1210 | return -1; | |||
1211 | ||||
1212 | if (dt_fixup_locals(base_child, fixup_child, base) < 0) | |||
1213 | return -1; | |||
1214 | } | |||
1215 | ||||
1216 | return 0; | |||
1217 | } | |||
1218 | ||||
1219 | /* | |||
1220 | * Update all /__symbols__ properties in an overlay that start with | |||
1221 | * "/fragment@X/__overlay__" with corresponding path prefix in the base tree. | |||
1222 | * | |||
1223 | * @param symbols /__symbols__ done to update. | |||
1224 | * @param fragment /fragment@X node that references to should be updated. | |||
1225 | * @param base_path Path of base tree node that the fragment overlaid. | |||
1226 | */ | |||
1227 | static void dt_fix_symbols(struct device_tree_node *symbols, | |||
1228 | struct device_tree_node *fragment, | |||
1229 | const char *base_path) | |||
1230 | { | |||
1231 | struct device_tree_property *prop; | |||
1232 | char buf[512]; /* Should be enough for maximum DT path length? */ | |||
1233 | char node_path[64]; /* easily enough for /fragment@XXXX/__overlay__ */ | |||
1234 | ||||
1235 | if (!symbols) /* If the overlay has no /__symbols__ node, we're done! */ | |||
1236 | return; | |||
1237 | ||||
1238 | int len = snprintf(node_path, sizeof(node_path), "/%s/__overlay__", | |||
1239 | fragment->name); | |||
1240 | ||||
1241 | list_for_each(prop, symbols->properties, list_node)for ((prop) = ({ const __typeof__(((typeof(*(prop)) *)0)-> list_node) *__mptr = ((symbols->properties).next); (typeof (*(prop)) *)((char *)__mptr - __builtin_offsetof(typeof(*(prop )), list_node)); }); (uintptr_t)prop + (uintptr_t)__builtin_offsetof (typeof(*(prop)), list_node); (prop) = ({ const __typeof__((( typeof(*(prop)) *)0)->list_node) *__mptr = ((prop)->list_node .next); (typeof(*(prop)) *)((char *)__mptr - __builtin_offsetof (typeof(*(prop)), list_node)); })) | |||
1242 | if (!strncmp(prop->prop.data, node_path, len)) { | |||
1243 | prop->prop.size = snprintf(buf, sizeof(buf), "%s%s", | |||
1244 | base_path, (char *)prop->prop.data + len) + 1; | |||
1245 | free(prop->prop.data); | |||
1246 | prop->prop.data = strdup(buf); | |||
1247 | } | |||
1248 | } | |||
1249 | ||||
1250 | /* | |||
1251 | * Fix up overlay according to a property in /__fixup__. If the fixed property | |||
1252 | * is a /fragment@X:target, also update /__symbols__ references to fragment. | |||
1253 | * | |||
1254 | * @params overlay Overlay to fix up. | |||
1255 | * @params fixup /__fixup__ property. | |||
1256 | * @params phandle phandle value to insert where the fixup points to. | |||
1257 | * @params base_path Path to the base DT node that the fixup points to. | |||
1258 | * @params overlay_symbols /__symbols__ node of the overlay. | |||
1259 | * | |||
1260 | * @return 0 on success, -1 on error. | |||
1261 | */ | |||
1262 | static int dt_fixup_external(struct device_tree *overlay, | |||
1263 | struct device_tree_property *fixup, | |||
1264 | uint32_t phandle, const char *base_path, | |||
1265 | struct device_tree_node *overlay_symbols) | |||
1266 | { | |||
1267 | struct device_tree_property *prop; | |||
1268 | ||||
1269 | /* External fixup properties are encoded as "<path>:<prop>:<offset>". */ | |||
1270 | char *entry = fixup->prop.data; | |||
1271 | while ((void *)entry < fixup->prop.data + fixup->prop.size) { | |||
1272 | /* okay to destroy fixup property value, won't need it again */ | |||
1273 | char *node_path = entry; | |||
1274 | entry = strchr(node_path, ':'); | |||
1275 | if (!entry) | |||
1276 | return -1; | |||
1277 | *entry++ = '\0'; | |||
1278 | ||||
1279 | char *prop_name = entry; | |||
1280 | entry = strchr(prop_name, ':'); | |||
1281 | if (!entry) | |||
1282 | return -1; | |||
1283 | *entry++ = '\0'; | |||
1284 | ||||
1285 | struct device_tree_node *ovl_node = dt_find_node_by_path( | |||
1286 | overlay, node_path, NULL((void *)0), NULL((void *)0), 0); | |||
1287 | if (!ovl_node || !isdigit(*entry)) | |||
1288 | return -1; | |||
1289 | ||||
1290 | struct device_tree_property *ovl_prop = NULL((void *)0); | |||
1291 | list_for_each(prop, ovl_node->properties, list_node)for ((prop) = ({ const __typeof__(((typeof(*(prop)) *)0)-> list_node) *__mptr = ((ovl_node->properties).next); (typeof (*(prop)) *)((char *)__mptr - __builtin_offsetof(typeof(*(prop )), list_node)); }); (uintptr_t)prop + (uintptr_t)__builtin_offsetof (typeof(*(prop)), list_node); (prop) = ({ const __typeof__((( typeof(*(prop)) *)0)->list_node) *__mptr = ((prop)->list_node .next); (typeof(*(prop)) *)((char *)__mptr - __builtin_offsetof (typeof(*(prop)), list_node)); })) | |||
1292 | if (!strcmp(prop->prop.name, prop_name)) { | |||
1293 | ovl_prop = prop; | |||
1294 | break; | |||
1295 | } | |||
1296 | ||||
1297 | /* Move entry to first char after number, must be a '\0'. */ | |||
1298 | uint32_t offset = skip_atoi(&entry); | |||
1299 | if (!ovl_prop || offset + 4 > ovl_prop->prop.size || entry[0]) | |||
1300 | return -1; | |||
1301 | entry++; /* jump over '\0' to potential next fixup */ | |||
1302 | ||||
1303 | be32enc(ovl_prop->prop.data + offset, phandle); | |||
1304 | ||||
1305 | /* If this is a /fragment@X:target property, update references | |||
1306 | to this fragment in the overlay __symbols__ now. */ | |||
1307 | if (offset == 0 && !strcmp(prop_name, "target") && | |||
1308 | !strchr(node_path + 1, '/')) /* only toplevel nodes */ | |||
1309 | dt_fix_symbols(overlay_symbols, ovl_node, base_path); | |||
1310 | } | |||
1311 | ||||
1312 | return 0; | |||
1313 | } | |||
1314 | ||||
1315 | /* | |||
1316 | * Apply all /__fixup__ properties in the overlay. This will destroy the | |||
1317 | * property data in /__fixup__ and it should not be accessed again. | |||
1318 | * | |||
1319 | * @params tree Base device tree that the overlay updates. | |||
1320 | * @params symbols /__symbols__ node of the base device tree. | |||
1321 | * @params overlay Overlay to fix up. | |||
1322 | * @params fixups /__fixup__ node in the overlay. | |||
1323 | * @params overlay_symbols /__symbols__ node of the overlay. | |||
1324 | * | |||
1325 | * @return 0 on success, -1 on error. | |||
1326 | */ | |||
1327 | static int dt_fixup_all_externals(struct device_tree *tree, | |||
1328 | struct device_tree_node *symbols, | |||
1329 | struct device_tree *overlay, | |||
1330 | struct device_tree_node *fixups, | |||
1331 | struct device_tree_node *overlay_symbols) | |||
1332 | { | |||
1333 | struct device_tree_property *fix; | |||
1334 | ||||
1335 | /* If we have any external fixups, base tree must have /__symbols__. */ | |||
1336 | if (!symbols) | |||
1337 | return -1; | |||
1338 | ||||
1339 | /* | |||
1340 | * Unlike /__local_fixups__, /__fixups__ is not a whole subtree that | |||
1341 | * mirrors the node hierarchy. It's just a directory of fixup properties | |||
1342 | * that each directly contain all information necessary to apply them. | |||
1343 | */ | |||
1344 | list_for_each(fix, fixups->properties, list_node)for ((fix) = ({ const __typeof__(((typeof(*(fix)) *)0)->list_node ) *__mptr = ((fixups->properties).next); (typeof(*(fix)) * )((char *)__mptr - __builtin_offsetof(typeof(*(fix)), list_node )); }); (uintptr_t)fix + (uintptr_t)__builtin_offsetof(typeof (*(fix)), list_node); (fix) = ({ const __typeof__(((typeof(*( fix)) *)0)->list_node) *__mptr = ((fix)->list_node.next ); (typeof(*(fix)) *)((char *)__mptr - __builtin_offsetof(typeof (*(fix)), list_node)); })) { | |||
1345 | /* The name of a fixup property is the label of the node we want | |||
1346 | a property to phandle-reference. Look up in /__symbols__. */ | |||
1347 | const char *path = dt_find_string_prop(symbols, fix->prop.name); | |||
1348 | if (!path) | |||
1349 | return -1; | |||
1350 | ||||
1351 | /* Find node the label pointed to figure out its phandle. */ | |||
1352 | struct device_tree_node *node = dt_find_node_by_path(tree, path, | |||
1353 | NULL((void *)0), NULL((void *)0), 0); | |||
1354 | if (!node) | |||
1355 | return -1; | |||
1356 | ||||
1357 | /* Write into the overlay property(s) pointing to that node. */ | |||
1358 | if (dt_fixup_external(overlay, fix, node->phandle, | |||
1359 | path, overlay_symbols) < 0) | |||
1360 | return -1; | |||
1361 | } | |||
1362 | ||||
1363 | return 0; | |||
1364 | } | |||
1365 | ||||
1366 | /* | |||
1367 | * Copy all nodes and properties from one DT subtree into another. This is a | |||
1368 | * shallow copy so both trees will point to the same property data afterwards. | |||
1369 | * | |||
1370 | * @params dst Destination subtree to copy into. | |||
1371 | * @params src Source subtree to copy from. | |||
1372 | * @params upd 1 to overwrite same-name properties, 0 to discard them. | |||
1373 | */ | |||
1374 | static void dt_copy_subtree(struct device_tree_node *dst, | |||
1375 | struct device_tree_node *src, int upd) | |||
1376 | { | |||
1377 | struct device_tree_property *prop; | |||
1378 | struct device_tree_property *src_prop; | |||
1379 | list_for_each(src_prop, src->properties, list_node)for ((src_prop) = ({ const __typeof__(((typeof(*(src_prop)) * )0)->list_node) *__mptr = ((src->properties).next); (typeof (*(src_prop)) *)((char *)__mptr - __builtin_offsetof(typeof(* (src_prop)), list_node)); }); (uintptr_t)src_prop + (uintptr_t )__builtin_offsetof(typeof(*(src_prop)), list_node); (src_prop ) = ({ const __typeof__(((typeof(*(src_prop)) *)0)->list_node ) *__mptr = ((src_prop)->list_node.next); (typeof(*(src_prop )) *)((char *)__mptr - __builtin_offsetof(typeof(*(src_prop)) , list_node)); })) { | |||
1380 | if (dt_prop_is_phandle(src_prop) || | |||
1381 | !strcmp(src_prop->prop.name, "name")) { | |||
1382 | printk(BIOS_DEBUG7, | |||
1383 | "WARNING: ignoring illegal overlay prop '%s'\n", | |||
1384 | src_prop->prop.name); | |||
1385 | continue; | |||
1386 | } | |||
1387 | ||||
1388 | struct device_tree_property *dst_prop = NULL((void *)0); | |||
1389 | list_for_each(prop, dst->properties, list_node)for ((prop) = ({ const __typeof__(((typeof(*(prop)) *)0)-> list_node) *__mptr = ((dst->properties).next); (typeof(*(prop )) *)((char *)__mptr - __builtin_offsetof(typeof(*(prop)), list_node )); }); (uintptr_t)prop + (uintptr_t)__builtin_offsetof(typeof (*(prop)), list_node); (prop) = ({ const __typeof__(((typeof( *(prop)) *)0)->list_node) *__mptr = ((prop)->list_node. next); (typeof(*(prop)) *)((char *)__mptr - __builtin_offsetof (typeof(*(prop)), list_node)); })) | |||
1390 | if (!strcmp(prop->prop.name, src_prop->prop.name)) { | |||
1391 | dst_prop = prop; | |||
1392 | break; | |||
1393 | } | |||
1394 | ||||
1395 | if (dst_prop) { | |||
1396 | if (!upd) { | |||
1397 | printk(BIOS_DEBUG7, | |||
1398 | "WARNING: ignoring prop update '%s'\n", | |||
1399 | src_prop->prop.name); | |||
1400 | continue; | |||
1401 | } | |||
1402 | } else { | |||
1403 | dst_prop = xzalloc(sizeof(*dst_prop))xzalloc_work((sizeof(*dst_prop)), "src/lib/device_tree.c", __func__ , 1403); | |||
1404 | list_insert_after(&dst_prop->list_node, | |||
1405 | &dst->properties); | |||
1406 | } | |||
1407 | ||||
1408 | dst_prop->prop = src_prop->prop; | |||
1409 | } | |||
1410 | ||||
1411 | struct device_tree_node *node; | |||
1412 | struct device_tree_node *src_node; | |||
1413 | list_for_each(src_node, src->children, list_node)for ((src_node) = ({ const __typeof__(((typeof(*(src_node)) * )0)->list_node) *__mptr = ((src->children).next); (typeof (*(src_node)) *)((char *)__mptr - __builtin_offsetof(typeof(* (src_node)), list_node)); }); (uintptr_t)src_node + (uintptr_t )__builtin_offsetof(typeof(*(src_node)), list_node); (src_node ) = ({ const __typeof__(((typeof(*(src_node)) *)0)->list_node ) *__mptr = ((src_node)->list_node.next); (typeof(*(src_node )) *)((char *)__mptr - __builtin_offsetof(typeof(*(src_node)) , list_node)); })) { | |||
1414 | struct device_tree_node *dst_node = NULL((void *)0); | |||
1415 | list_for_each(node, dst->children, list_node)for ((node) = ({ const __typeof__(((typeof(*(node)) *)0)-> list_node) *__mptr = ((dst->children).next); (typeof(*(node )) *)((char *)__mptr - __builtin_offsetof(typeof(*(node)), list_node )); }); (uintptr_t)node + (uintptr_t)__builtin_offsetof(typeof (*(node)), list_node); (node) = ({ const __typeof__(((typeof( *(node)) *)0)->list_node) *__mptr = ((node)->list_node. next); (typeof(*(node)) *)((char *)__mptr - __builtin_offsetof (typeof(*(node)), list_node)); })) | |||
1416 | if (!strcmp(node->name, src_node->name)) { | |||
1417 | dst_node = node; | |||
1418 | break; | |||
1419 | } | |||
1420 | ||||
1421 | if (!dst_node) { | |||
1422 | dst_node = xzalloc(sizeof(*dst_node))xzalloc_work((sizeof(*dst_node)), "src/lib/device_tree.c", __func__ , 1422); | |||
1423 | *dst_node = *src_node; | |||
1424 | list_insert_after(&dst_node->list_node, &dst->children); | |||
1425 | } else { | |||
1426 | dt_copy_subtree(dst_node, src_node, upd); | |||
1427 | } | |||
1428 | } | |||
1429 | } | |||
1430 | ||||
1431 | /* | |||
1432 | * Apply an overlay /fragment@X node to a base device tree. | |||
1433 | * | |||
1434 | * @param tree Base device tree. | |||
1435 | * @param fragment /fragment@X node. | |||
1436 | * @params overlay_symbols /__symbols__ node of the overlay. | |||
1437 | * | |||
1438 | * @return 0 on success, -1 on error. | |||
1439 | */ | |||
1440 | static int dt_import_fragment(struct device_tree *tree, | |||
1441 | struct device_tree_node *fragment, | |||
1442 | struct device_tree_node *overlay_symbols) | |||
1443 | { | |||
1444 | /* The actual overlaid nodes/props are in an __overlay__ child node. */ | |||
1445 | static const char *overlay_path[] = { "__overlay__", NULL((void *)0) }; | |||
1446 | struct device_tree_node *overlay = dt_find_node(fragment, overlay_path, | |||
1447 | NULL((void *)0), NULL((void *)0), 0); | |||
1448 | ||||
1449 | /* If it doesn't have an __overlay__ child, it's not a fragment. */ | |||
1450 | if (!overlay) | |||
1451 | return 0; | |||
1452 | ||||
1453 | /* Target node of the fragment can be given by path or by phandle. */ | |||
1454 | struct device_tree_property *prop; | |||
1455 | struct device_tree_property *phandle = NULL((void *)0); | |||
1456 | struct device_tree_property *path = NULL((void *)0); | |||
1457 | list_for_each(prop, fragment->properties, list_node)for ((prop) = ({ const __typeof__(((typeof(*(prop)) *)0)-> list_node) *__mptr = ((fragment->properties).next); (typeof (*(prop)) *)((char *)__mptr - __builtin_offsetof(typeof(*(prop )), list_node)); }); (uintptr_t)prop + (uintptr_t)__builtin_offsetof (typeof(*(prop)), list_node); (prop) = ({ const __typeof__((( typeof(*(prop)) *)0)->list_node) *__mptr = ((prop)->list_node .next); (typeof(*(prop)) *)((char *)__mptr - __builtin_offsetof (typeof(*(prop)), list_node)); })) { | |||
1458 | if (!strcmp(prop->prop.name, "target")) { | |||
1459 | phandle = prop; | |||
1460 | break; /* phandle target has priority, stop looking */ | |||
1461 | } | |||
1462 | if (!strcmp(prop->prop.name, "target-path")) | |||
1463 | path = prop; | |||
1464 | } | |||
1465 | ||||
1466 | struct device_tree_node *target = NULL((void *)0); | |||
1467 | if (phandle) { | |||
1468 | if (phandle->prop.size != sizeof(uint32_t)) | |||
1469 | return -1; | |||
1470 | target = dt_find_node_by_phandle(tree->root, | |||
1471 | be32dec(phandle->prop.data)); | |||
1472 | /* Symbols already updated as part of dt_fixup_external(). */ | |||
1473 | } else if (path) { | |||
1474 | target = dt_find_node_by_path(tree, path->prop.data, | |||
1475 | NULL((void *)0), NULL((void *)0), 0); | |||
1476 | dt_fix_symbols(overlay_symbols, fragment, path->prop.data); | |||
1477 | } | |||
1478 | if (!target) | |||
1479 | return -1; | |||
1480 | ||||
1481 | dt_copy_subtree(target, overlay, 1); | |||
1482 | return 0; | |||
1483 | } | |||
1484 | ||||
1485 | /* | |||
1486 | * Apply a device tree overlay to a base device tree. This will | |||
1487 | * destroy/incorporate the overlay data, so it should not be freed or reused. | |||
1488 | * See dtc.git/Documentation/dt-object-internal.txt for overlay format details. | |||
1489 | * | |||
1490 | * @param tree Unflattened base device tree to add the overlay into. | |||
1491 | * @param overlay Unflattened overlay device tree to apply to the base. | |||
1492 | * | |||
1493 | * @return 0 on success, -1 on error. | |||
1494 | */ | |||
1495 | int dt_apply_overlay(struct device_tree *tree, struct device_tree *overlay) | |||
1496 | { | |||
1497 | /* | |||
1498 | * First, we need to make sure phandles inside the overlay don't clash | |||
1499 | * with those in the base tree. We just define the highest phandle value | |||
1500 | * in the base tree as the "phandle offset" for this overlay and | |||
1501 | * increment all phandles in it by that value. | |||
1502 | */ | |||
1503 | uint32_t phandle_base = tree->max_phandle; | |||
1504 | uint32_t new_max = dt_adjust_all_phandles(overlay->root, phandle_base); | |||
1505 | if (!new_max) { | |||
1506 | printk(BIOS_ERR3, "invalid phandles in overlay\n"); | |||
1507 | return -1; | |||
1508 | } | |||
1509 | tree->max_phandle = new_max; | |||
1510 | ||||
1511 | /* Now that we changed phandles in the overlay, we need to update any | |||
1512 | nodes referring to them. Those are listed in /__local_fixups__. */ | |||
1513 | struct device_tree_node *local_fixups = dt_find_node_by_path(overlay, | |||
1514 | "/__local_fixups__", NULL((void *)0), NULL((void *)0), 0); | |||
1515 | if (local_fixups && dt_fixup_locals(overlay->root, local_fixups, | |||
1516 | phandle_base) < 0) { | |||
1517 | printk(BIOS_ERR3, "invalid local fixups in overlay\n"); | |||
1518 | return -1; | |||
1519 | } | |||
1520 | ||||
1521 | /* | |||
1522 | * Besides local phandle references (from nodes within the overlay to | |||
1523 | * other nodes within the overlay), the overlay may also contain phandle | |||
1524 | * references to the base tree. These are stored with invalid values and | |||
1525 | * must be updated now. /__symbols__ contains a list of all labels in | |||
1526 | * the base tree, and /__fixups__ describes all nodes in the overlay | |||
1527 | * that contain external phandle references. | |||
1528 | * We also take this opportunity to update all /fragment@X/__overlay__/ | |||
1529 | * prefixes in the overlay's /__symbols__ node to the correct path that | |||
1530 | * the fragment will be placed in later, since this is the only step | |||
1531 | * where we have all necessary information for that easily available. | |||
1532 | */ | |||
1533 | struct device_tree_node *symbols = dt_find_node_by_path(tree, | |||
1534 | "/__symbols__", NULL((void *)0), NULL((void *)0), 0); | |||
1535 | struct device_tree_node *fixups = dt_find_node_by_path(overlay, | |||
1536 | "/__fixups__", NULL((void *)0), NULL((void *)0), 0); | |||
1537 | struct device_tree_node *overlay_symbols = dt_find_node_by_path(overlay, | |||
1538 | "/__symbols__", NULL((void *)0), NULL((void *)0), 0); | |||
1539 | if (fixups && dt_fixup_all_externals(tree, symbols, overlay, | |||
1540 | fixups, overlay_symbols) < 0) { | |||
1541 | printk(BIOS_ERR3, "cannot match external fixups from overlay\n"); | |||
1542 | return -1; | |||
1543 | } | |||
1544 | ||||
1545 | /* After all this fixing up, we can finally merge overlay into the tree | |||
1546 | (one fragment at a time, because for some reason it's split up). */ | |||
1547 | struct device_tree_node *fragment; | |||
1548 | list_for_each(fragment, overlay->root->children, list_node)for ((fragment) = ({ const __typeof__(((typeof(*(fragment)) * )0)->list_node) *__mptr = ((overlay->root->children) .next); (typeof(*(fragment)) *)((char *)__mptr - __builtin_offsetof (typeof(*(fragment)), list_node)); }); (uintptr_t)fragment + ( uintptr_t)__builtin_offsetof(typeof(*(fragment)), list_node); (fragment) = ({ const __typeof__(((typeof(*(fragment)) *)0)-> list_node) *__mptr = ((fragment)->list_node.next); (typeof (*(fragment)) *)((char *)__mptr - __builtin_offsetof(typeof(* (fragment)), list_node)); })) | |||
1549 | if (dt_import_fragment(tree, fragment, overlay_symbols) < 0) { | |||
1550 | printk(BIOS_ERR3, "bad DT fragment '%s'\n", | |||
1551 | fragment->name); | |||
1552 | return -1; | |||
1553 | } | |||
1554 | ||||
1555 | /* | |||
1556 | * We need to also update /__symbols__ to include labels from this | |||
1557 | * overlay, in case we want to load further overlays with external | |||
1558 | * phandle references to it. If the base tree already has a /__symbols__ | |||
1559 | * we merge them together, otherwise we just insert the overlay's | |||
1560 | * /__symbols__ node into the base tree root. | |||
1561 | */ | |||
1562 | if (overlay_symbols) { | |||
1563 | if (symbols) | |||
1564 | dt_copy_subtree(symbols, overlay_symbols, 0); | |||
1565 | else | |||
1566 | list_insert_after(&overlay_symbols->list_node, | |||
1567 | &tree->root->children); | |||
1568 | } | |||
1569 | ||||
1570 | return 0; | |||
1571 | } |