File: | 3rdparty/vboot/cgpt/cgpt_common.c |
Warning: | line 509, column 9 Value stored to 'code_point_ready' is never read |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
1 | /* Copyright 2010 The ChromiumOS Authors |
2 | * Use of this source code is governed by a BSD-style license that can be |
3 | * found in the LICENSE file. |
4 | * |
5 | * Utility for ChromeOS-specific GPT partitions, Please see corresponding .c |
6 | * files for more details. |
7 | */ |
8 | |
9 | #include <errno(*__errno_location ()).h> |
10 | #include <fcntl.h> |
11 | #include <getopt.h> |
12 | #if !defined(HAVE_MACOS) && !defined(__FreeBSD__) && !defined(__OpenBSD__) |
13 | #include <linux1/major.h> |
14 | #include <mtd/mtd-user.h> |
15 | #endif |
16 | #include <stdarg.h> |
17 | #include <stdint.h> |
18 | #include <stdio.h> |
19 | #include <stdlib.h> |
20 | #include <string.h> |
21 | #include <sys/ioctl.h> |
22 | #include <sys/mount.h> |
23 | #include <sys/stat.h> |
24 | #include <sys/types.h> |
25 | #include <unistd.h> |
26 | |
27 | #include "cgpt.h" |
28 | #include "cgptlib_internal.h" |
29 | #include "crc32.h" |
30 | #include "vboot_host.h" |
31 | |
32 | static const char kErrorTag[] = "ERROR"; |
33 | static const char kWarningTag[] = "WARNING"; |
34 | |
35 | static void LogToStderr(const char *tag, const char *format, va_list ap) { |
36 | fprintf(stderrstderr, "%s: ", tag); |
37 | vfprintf(stderrstderr, format, ap); |
38 | } |
39 | |
40 | void Error(const char *format, ...) { |
41 | va_list ap; |
42 | va_start(ap, format)__builtin_va_start(ap, format); |
43 | LogToStderr(kErrorTag, format, ap); |
44 | va_end(ap)__builtin_va_end(ap); |
45 | } |
46 | |
47 | void Warning(const char *format, ...) { |
48 | va_list ap; |
49 | va_start(ap, format)__builtin_va_start(ap, format); |
50 | LogToStderr(kWarningTag, format, ap); |
51 | va_end(ap)__builtin_va_end(ap); |
52 | } |
53 | |
54 | int check_int_parse(char option, const char *buf) { |
55 | if (!*optarg || (buf && *buf)) { |
56 | Error("invalid argument to -%c: \"%s\"\n", option, optarg); |
57 | return 1; |
58 | } |
59 | return 0; |
60 | } |
61 | |
62 | int check_int_limit(char option, int val, int low, int high) { |
63 | if (val < low || val > high) { |
64 | Error("value for -%c must be between %d and %d", option, low, high); |
65 | return 1; |
66 | } |
67 | return 0; |
68 | } |
69 | |
70 | int CheckValid(const struct drive *drive) { |
71 | if ((drive->gpt.valid_headers != MASK_BOTH) || |
72 | (drive->gpt.valid_entries != MASK_BOTH)) { |
73 | Warning("One of the GPT headers/entries is invalid\n\n"); |
74 | return CGPT_FAILED; |
75 | } |
76 | return CGPT_OK; |
77 | } |
78 | |
79 | int Load(struct drive *drive, uint8_t *buf, |
80 | const uint64_t sector, |
81 | const uint64_t sector_bytes, |
82 | const uint64_t sector_count) { |
83 | int count; /* byte count to read */ |
84 | int nread; |
85 | |
86 | require(buf)do { if (!(buf)) { fprintf(stderr, "condition (%s) failed at %s:%d\n" , "buf", "cgpt/cgpt_common.c", 86); exit(1); } } while (0); |
87 | if (!sector_count || !sector_bytes) { |
88 | Error("%s() failed at line %d: sector_count=%" PRIu64"l" "u" ", sector_bytes=%" PRIu64"l" "u" "\n", |
89 | __FUNCTION__, __LINE__89, sector_count, sector_bytes); |
90 | return CGPT_FAILED; |
91 | } |
92 | /* Make sure that sector_bytes * sector_count doesn't roll over. */ |
93 | if (sector_bytes > (UINT64_MAX(18446744073709551615UL) / sector_count)) { |
94 | Error("%s() failed at line %d: sector_count=%" PRIu64"l" "u" ", sector_bytes=%" PRIu64"l" "u" "\n", |
95 | __FUNCTION__, __LINE__95, sector_count, sector_bytes); |
96 | return CGPT_FAILED; |
97 | } |
98 | count = sector_bytes * sector_count; |
99 | |
100 | if (-1 == lseek(drive->fd, sector * sector_bytes, SEEK_SET0)) { |
101 | Error("Can't seek: %s\n", strerror(errno(*__errno_location ()))); |
102 | return CGPT_FAILED; |
103 | } |
104 | |
105 | nread = read(drive->fd, buf, count); |
106 | if (nread < count) { |
107 | Error("Can't read enough: %d, not %d\n", nread, count); |
108 | return CGPT_FAILED; |
109 | } |
110 | |
111 | return CGPT_OK; |
112 | } |
113 | |
114 | |
115 | int ReadPMBR(struct drive *drive) { |
116 | if (-1 == lseek(drive->fd, 0, SEEK_SET0)) |
117 | return CGPT_FAILED; |
118 | |
119 | int nread = read(drive->fd, &drive->pmbr, sizeof(struct pmbr)); |
120 | if (nread != sizeof(struct pmbr)) |
121 | return CGPT_FAILED; |
122 | |
123 | return CGPT_OK; |
124 | } |
125 | |
126 | int WritePMBR(struct drive *drive) { |
127 | if (-1 == lseek(drive->fd, 0, SEEK_SET0)) |
128 | return CGPT_FAILED; |
129 | |
130 | int nwrote = write(drive->fd, &drive->pmbr, sizeof(struct pmbr)); |
131 | if (nwrote != sizeof(struct pmbr)) |
132 | return CGPT_FAILED; |
133 | |
134 | return CGPT_OK; |
135 | } |
136 | |
137 | int Save(struct drive *drive, const uint8_t *buf, |
138 | const uint64_t sector, |
139 | const uint64_t sector_bytes, |
140 | const uint64_t sector_count) { |
141 | int count; /* byte count to write */ |
142 | int nwrote; |
143 | |
144 | require(buf)do { if (!(buf)) { fprintf(stderr, "condition (%s) failed at %s:%d\n" , "buf", "cgpt/cgpt_common.c", 144); exit(1); } } while (0); |
145 | count = sector_bytes * sector_count; |
146 | |
147 | if (-1 == lseek(drive->fd, sector * sector_bytes, SEEK_SET0)) |
148 | return CGPT_FAILED; |
149 | |
150 | nwrote = write(drive->fd, buf, count); |
151 | if (nwrote < count) |
152 | return CGPT_FAILED; |
153 | |
154 | return CGPT_OK; |
155 | } |
156 | |
157 | static int GptLoad(struct drive *drive, uint32_t sector_bytes) { |
158 | drive->gpt.sector_bytes = sector_bytes; |
159 | if (drive->size % drive->gpt.sector_bytes) { |
160 | Error("Media size (%llu) is not a multiple of sector size(%d)\n", |
161 | (long long unsigned int)drive->size, drive->gpt.sector_bytes); |
162 | return -1; |
163 | } |
164 | drive->gpt.streaming_drive_sectors = drive->size / drive->gpt.sector_bytes; |
165 | |
166 | drive->gpt.primary_header = malloc(drive->gpt.sector_bytes); |
167 | drive->gpt.secondary_header = malloc(drive->gpt.sector_bytes); |
168 | drive->gpt.primary_entries = malloc(GPT_ENTRIES_ALLOC_SIZE(128 * sizeof(GptEntry))); |
169 | drive->gpt.secondary_entries = malloc(GPT_ENTRIES_ALLOC_SIZE(128 * sizeof(GptEntry))); |
170 | if (!drive->gpt.primary_header || !drive->gpt.secondary_header || |
171 | !drive->gpt.primary_entries || !drive->gpt.secondary_entries) |
172 | return -1; |
173 | |
174 | /* TODO(namnguyen): Remove this and totally trust gpt_drive_sectors. */ |
175 | if (!(drive->gpt.flags & GPT_FLAG_EXTERNAL0x1)) { |
176 | drive->gpt.gpt_drive_sectors = drive->gpt.streaming_drive_sectors; |
177 | } /* Else, we trust gpt.gpt_drive_sectors. */ |
178 | |
179 | // Read the data. |
180 | if (CGPT_OK != Load(drive, drive->gpt.primary_header, |
181 | GPT_PMBR_SECTORS1, |
182 | drive->gpt.sector_bytes, GPT_HEADER_SECTORS1)) { |
183 | Error("Cannot read primary GPT header\n"); |
184 | return -1; |
185 | } |
186 | if (CGPT_OK != Load(drive, drive->gpt.secondary_header, |
187 | drive->gpt.gpt_drive_sectors - GPT_PMBR_SECTORS1, |
188 | drive->gpt.sector_bytes, GPT_HEADER_SECTORS1)) { |
189 | Error("Cannot read secondary GPT header\n"); |
190 | return -1; |
191 | } |
192 | GptHeader* primary_header = (GptHeader*)drive->gpt.primary_header; |
193 | if (CheckHeader(primary_header, 0, drive->gpt.streaming_drive_sectors, |
194 | drive->gpt.gpt_drive_sectors, |
195 | drive->gpt.flags, |
196 | drive->gpt.sector_bytes) == 0) { |
197 | if (CGPT_OK != Load(drive, drive->gpt.primary_entries, |
198 | primary_header->entries_lba, |
199 | drive->gpt.sector_bytes, |
200 | CalculateEntriesSectors(primary_header, |
201 | drive->gpt.sector_bytes))) { |
202 | Error("Cannot read primary partition entry array\n"); |
203 | return -1; |
204 | } |
205 | } else { |
206 | Warning("Primary GPT header is %s\n", |
207 | memcmp(primary_header->signature, GPT_HEADER_SIGNATURE_IGNORED"IGNOREME", |
208 | GPT_HEADER_SIGNATURE_SIZE8) ? "invalid" : "being ignored"); |
209 | } |
210 | GptHeader* secondary_header = (GptHeader*)drive->gpt.secondary_header; |
211 | if (CheckHeader(secondary_header, 1, drive->gpt.streaming_drive_sectors, |
212 | drive->gpt.gpt_drive_sectors, |
213 | drive->gpt.flags, |
214 | drive->gpt.sector_bytes) == 0) { |
215 | if (CGPT_OK != Load(drive, drive->gpt.secondary_entries, |
216 | secondary_header->entries_lba, |
217 | drive->gpt.sector_bytes, |
218 | CalculateEntriesSectors(secondary_header, |
219 | drive->gpt.sector_bytes))) { |
220 | Error("Cannot read secondary partition entry array\n"); |
221 | return -1; |
222 | } |
223 | } else { |
224 | Warning("Secondary GPT header is %s\n", |
225 | memcmp(primary_header->signature, GPT_HEADER_SIGNATURE_IGNORED"IGNOREME", |
226 | GPT_HEADER_SIGNATURE_SIZE8) ? "invalid" : "being ignored"); |
227 | } |
228 | return 0; |
229 | } |
230 | |
231 | static int GptSave(struct drive *drive) { |
232 | int errors = 0; |
233 | |
234 | if (!(drive->gpt.ignored & MASK_PRIMARY)) { |
235 | if (drive->gpt.modified & GPT_MODIFIED_HEADER10x01) { |
236 | if (CGPT_OK != Save(drive, drive->gpt.primary_header, |
237 | GPT_PMBR_SECTORS1, |
238 | drive->gpt.sector_bytes, GPT_HEADER_SECTORS1)) { |
239 | errors++; |
240 | Error("Cannot write primary header: %s\n", strerror(errno(*__errno_location ()))); |
241 | } |
242 | } |
243 | GptHeader* primary_header = (GptHeader*)drive->gpt.primary_header; |
244 | if (drive->gpt.modified & GPT_MODIFIED_ENTRIES10x04) { |
245 | if (CGPT_OK != Save(drive, drive->gpt.primary_entries, |
246 | primary_header->entries_lba, |
247 | drive->gpt.sector_bytes, |
248 | CalculateEntriesSectors(primary_header, |
249 | drive->gpt.sector_bytes))) { |
250 | errors++; |
251 | Error("Cannot write primary entries: %s\n", strerror(errno(*__errno_location ()))); |
252 | } |
253 | } |
254 | |
255 | // Sync primary GPT before touching secondary so one is always valid. |
256 | if (drive->gpt.modified & (GPT_MODIFIED_HEADER10x01 | GPT_MODIFIED_ENTRIES10x04)) |
257 | if (fsync(drive->fd) < 0 && errno(*__errno_location ()) == EIO5) { |
258 | errors++; |
259 | Error("I/O error when trying to write primary GPT\n"); |
260 | } |
261 | } |
262 | |
263 | // Only start writing secondary GPT if primary was written correctly. |
264 | if (!errors && !(drive->gpt.ignored & MASK_SECONDARY)) { |
265 | if (drive->gpt.modified & GPT_MODIFIED_HEADER20x02) { |
266 | if(CGPT_OK != Save(drive, drive->gpt.secondary_header, |
267 | drive->gpt.gpt_drive_sectors - GPT_PMBR_SECTORS1, |
268 | drive->gpt.sector_bytes, GPT_HEADER_SECTORS1)) { |
269 | errors++; |
270 | Error("Cannot write secondary header: %s\n", strerror(errno(*__errno_location ()))); |
271 | } |
272 | } |
273 | GptHeader* secondary_header = (GptHeader*)drive->gpt.secondary_header; |
274 | if (drive->gpt.modified & GPT_MODIFIED_ENTRIES20x08) { |
275 | if (CGPT_OK != Save(drive, drive->gpt.secondary_entries, |
276 | secondary_header->entries_lba, |
277 | drive->gpt.sector_bytes, |
278 | CalculateEntriesSectors(secondary_header, |
279 | drive->gpt.sector_bytes))) { |
280 | errors++; |
281 | Error("Cannot write secondary entries: %s\n", strerror(errno(*__errno_location ()))); |
282 | } |
283 | } |
284 | } |
285 | |
286 | return errors ? -1 : 0; |
287 | } |
288 | |
289 | /* |
290 | * Query drive size and bytes per sector. Return zero on success. On error, |
291 | * -1 is returned and errno is set appropriately. |
292 | */ |
293 | static int ObtainDriveSize(int fd, uint64_t* size, uint32_t* sector_bytes) { |
294 | struct stat stat; |
295 | if (fstat(fd, &stat) == -1) { |
296 | return -1; |
297 | } |
298 | #if !defined(HAVE_MACOS) && !defined(__FreeBSD__) && !defined(__OpenBSD__) |
299 | if ((stat.st_mode & S_IFMT0170000) != S_IFREG0100000) { |
300 | if (ioctl(fd, BLKGETSIZE64(((2U) << (((0 +8)+8)+14)) | (((0x12)) << (0 +8)) | (((114)) << 0) | ((((sizeof(size_t)))) << ((0 + 8)+8))), size) < 0) { |
301 | return -1; |
302 | } |
303 | if (ioctl(fd, BLKSSZGET(((0U) << (((0 +8)+8)+14)) | (((0x12)) << (0 +8)) | (((104)) << 0) | ((0) << ((0 +8)+8))), sector_bytes) < 0) { |
304 | return -1; |
305 | } |
306 | } else { |
307 | *sector_bytes = 512; /* bytes */ |
308 | *size = stat.st_size; |
309 | } |
310 | #else |
311 | *sector_bytes = 512; /* bytes */ |
312 | *size = stat.st_size; |
313 | #endif |
314 | return 0; |
315 | } |
316 | |
317 | int DriveOpen(const char *drive_path, struct drive *drive, int mode, |
318 | uint64_t drive_size) { |
319 | uint32_t sector_bytes; |
320 | |
321 | require(drive_path)do { if (!(drive_path)) { fprintf(stderr, "condition (%s) failed at %s:%d\n" , "drive_path", "cgpt/cgpt_common.c", 321); exit(1); } } while (0); |
322 | require(drive)do { if (!(drive)) { fprintf(stderr, "condition (%s) failed at %s:%d\n" , "drive", "cgpt/cgpt_common.c", 322); exit(1); } } while (0); |
323 | |
324 | // Clear struct for proper error handling. |
325 | memset(drive, 0, sizeof(struct drive)); |
326 | |
327 | drive->fd = open(drive_path, mode | |
328 | #if !defined(HAVE_MACOS) && !defined(__FreeBSD__) && !defined(__OpenBSD__) |
329 | O_LARGEFILE0 | |
330 | #endif |
331 | O_NOFOLLOW0400000); |
332 | if (drive->fd == -1) { |
333 | Error("Can't open %s: %s\n", drive_path, strerror(errno(*__errno_location ()))); |
334 | return CGPT_FAILED; |
335 | } |
336 | |
337 | uint64_t gpt_drive_size; |
338 | if (ObtainDriveSize(drive->fd, &gpt_drive_size, §or_bytes) != 0) { |
339 | Error("Can't get drive size and bytes per sector for %s: %s\n", |
340 | drive_path, strerror(errno(*__errno_location ()))); |
341 | goto error_close; |
342 | } |
343 | |
344 | drive->gpt.gpt_drive_sectors = gpt_drive_size / sector_bytes; |
345 | if (drive_size == 0) { |
346 | drive->size = gpt_drive_size; |
347 | drive->gpt.flags = 0; |
348 | } else { |
349 | drive->size = drive_size; |
350 | drive->gpt.flags = GPT_FLAG_EXTERNAL0x1; |
351 | } |
352 | |
353 | |
354 | if (GptLoad(drive, sector_bytes)) { |
355 | goto error_close; |
356 | } |
357 | |
358 | // We just load the data. Caller must validate it. |
359 | return CGPT_OK; |
360 | |
361 | error_close: |
362 | (void) DriveClose(drive, 0); |
363 | return CGPT_FAILED; |
364 | } |
365 | |
366 | |
367 | int DriveClose(struct drive *drive, int update_as_needed) { |
368 | int errors = 0; |
369 | |
370 | if (update_as_needed) { |
371 | if (GptSave(drive)) { |
372 | errors++; |
373 | } |
374 | } |
375 | |
376 | free(drive->gpt.primary_header); |
377 | drive->gpt.primary_header = NULL((void*)0); |
378 | free(drive->gpt.primary_entries); |
379 | drive->gpt.primary_entries = NULL((void*)0); |
380 | free(drive->gpt.secondary_header); |
381 | drive->gpt.secondary_header = NULL((void*)0); |
382 | free(drive->gpt.secondary_entries); |
383 | drive->gpt.secondary_entries = NULL((void*)0); |
384 | |
385 | // Sync early! Only sync file descriptor here, and leave the whole system sync |
386 | // outside cgpt because whole system sync would trigger tons of disk accesses |
387 | // and timeout tests. |
388 | fsync(drive->fd); |
389 | |
390 | close(drive->fd); |
391 | |
392 | return errors ? CGPT_FAILED : CGPT_OK; |
393 | } |
394 | |
395 | |
396 | /* GUID conversion functions. Accepted format: |
397 | * |
398 | * "C12A7328-F81F-11D2-BA4B-00A0C93EC93B" |
399 | * |
400 | * Returns CGPT_OK if parsing is successful; otherwise CGPT_FAILED. |
401 | */ |
402 | int StrToGuid(const char *str, Guid *guid) { |
403 | uint32_t time_low; |
404 | uint16_t time_mid; |
405 | uint16_t time_high_and_version; |
406 | unsigned int chunk[11]; |
407 | |
408 | if (11 != sscanf(str, "%08X-%04X-%04X-%02X%02X-%02X%02X%02X%02X%02X%02X", |
409 | chunk+0, |
410 | chunk+1, |
411 | chunk+2, |
412 | chunk+3, |
413 | chunk+4, |
414 | chunk+5, |
415 | chunk+6, |
416 | chunk+7, |
417 | chunk+8, |
418 | chunk+9, |
419 | chunk+10)) { |
420 | printf("FAILED\n"); |
421 | return CGPT_FAILED; |
422 | } |
423 | |
424 | time_low = chunk[0] & 0xffffffff; |
425 | time_mid = chunk[1] & 0xffff; |
426 | time_high_and_version = chunk[2] & 0xffff; |
427 | |
428 | guid->u.Uuid.time_low = htole32(time_low)__uint32_identity (time_low); |
429 | guid->u.Uuid.time_mid = htole16(time_mid)__uint16_identity (time_mid); |
430 | guid->u.Uuid.time_high_and_version = htole16(time_high_and_version)__uint16_identity (time_high_and_version); |
431 | |
432 | guid->u.Uuid.clock_seq_high_and_reserved = chunk[3] & 0xff; |
433 | guid->u.Uuid.clock_seq_low = chunk[4] & 0xff; |
434 | guid->u.Uuid.node[0] = chunk[5] & 0xff; |
435 | guid->u.Uuid.node[1] = chunk[6] & 0xff; |
436 | guid->u.Uuid.node[2] = chunk[7] & 0xff; |
437 | guid->u.Uuid.node[3] = chunk[8] & 0xff; |
438 | guid->u.Uuid.node[4] = chunk[9] & 0xff; |
439 | guid->u.Uuid.node[5] = chunk[10] & 0xff; |
440 | |
441 | return CGPT_OK; |
442 | } |
443 | void GuidToStr(const Guid *guid, char *str, unsigned int buflen) { |
444 | require(buflen >= GUID_STRLEN)do { if (!(buflen >= 37)) { fprintf(stderr, "condition (%s) failed at %s:%d\n" , "buflen >= GUID_STRLEN", "cgpt/cgpt_common.c", 444); exit (1); } } while (0); |
445 | require(snprintf(str, buflen,do { if (!(snprintf(str, buflen, "%08X-%04X-%04X-%02X%02X-%02X%02X%02X%02X%02X%02X" , __uint32_identity (guid->u.Uuid.time_low), __uint16_identity (guid->u.Uuid.time_mid), __uint16_identity (guid->u.Uuid .time_high_and_version), guid->u.Uuid.clock_seq_high_and_reserved , guid->u.Uuid.clock_seq_low, guid->u.Uuid.node[0], guid ->u.Uuid.node[1], guid->u.Uuid.node[2], guid->u.Uuid .node[3], guid->u.Uuid.node[4], guid->u.Uuid.node[5]) == 37 -1)) { fprintf(stderr, "condition (%s) failed at %s:%d\n" , "snprintf(str, buflen, \"%08X-%04X-%04X-%02X%02X-%02X%02X%02X%02X%02X%02X\", le32toh(guid->u.Uuid.time_low), le16toh(guid->u.Uuid.time_mid), le16toh(guid->u.Uuid.time_high_and_version), guid->u.Uuid.clock_seq_high_and_reserved, guid->u.Uuid.clock_seq_low, guid->u.Uuid.node[0], guid->u.Uuid.node[1], guid->u.Uuid.node[2], guid->u.Uuid.node[3], guid->u.Uuid.node[4], guid->u.Uuid.node[5]) == GUID_STRLEN-1" , "cgpt/cgpt_common.c", 454); exit(1); } } while (0) |
446 | "%08X-%04X-%04X-%02X%02X-%02X%02X%02X%02X%02X%02X",do { if (!(snprintf(str, buflen, "%08X-%04X-%04X-%02X%02X-%02X%02X%02X%02X%02X%02X" , __uint32_identity (guid->u.Uuid.time_low), __uint16_identity (guid->u.Uuid.time_mid), __uint16_identity (guid->u.Uuid .time_high_and_version), guid->u.Uuid.clock_seq_high_and_reserved , guid->u.Uuid.clock_seq_low, guid->u.Uuid.node[0], guid ->u.Uuid.node[1], guid->u.Uuid.node[2], guid->u.Uuid .node[3], guid->u.Uuid.node[4], guid->u.Uuid.node[5]) == 37 -1)) { fprintf(stderr, "condition (%s) failed at %s:%d\n" , "snprintf(str, buflen, \"%08X-%04X-%04X-%02X%02X-%02X%02X%02X%02X%02X%02X\", le32toh(guid->u.Uuid.time_low), le16toh(guid->u.Uuid.time_mid), le16toh(guid->u.Uuid.time_high_and_version), guid->u.Uuid.clock_seq_high_and_reserved, guid->u.Uuid.clock_seq_low, guid->u.Uuid.node[0], guid->u.Uuid.node[1], guid->u.Uuid.node[2], guid->u.Uuid.node[3], guid->u.Uuid.node[4], guid->u.Uuid.node[5]) == GUID_STRLEN-1" , "cgpt/cgpt_common.c", 454); exit(1); } } while (0) |
447 | le32toh(guid->u.Uuid.time_low),do { if (!(snprintf(str, buflen, "%08X-%04X-%04X-%02X%02X-%02X%02X%02X%02X%02X%02X" , __uint32_identity (guid->u.Uuid.time_low), __uint16_identity (guid->u.Uuid.time_mid), __uint16_identity (guid->u.Uuid .time_high_and_version), guid->u.Uuid.clock_seq_high_and_reserved , guid->u.Uuid.clock_seq_low, guid->u.Uuid.node[0], guid ->u.Uuid.node[1], guid->u.Uuid.node[2], guid->u.Uuid .node[3], guid->u.Uuid.node[4], guid->u.Uuid.node[5]) == 37 -1)) { fprintf(stderr, "condition (%s) failed at %s:%d\n" , "snprintf(str, buflen, \"%08X-%04X-%04X-%02X%02X-%02X%02X%02X%02X%02X%02X\", le32toh(guid->u.Uuid.time_low), le16toh(guid->u.Uuid.time_mid), le16toh(guid->u.Uuid.time_high_and_version), guid->u.Uuid.clock_seq_high_and_reserved, guid->u.Uuid.clock_seq_low, guid->u.Uuid.node[0], guid->u.Uuid.node[1], guid->u.Uuid.node[2], guid->u.Uuid.node[3], guid->u.Uuid.node[4], guid->u.Uuid.node[5]) == GUID_STRLEN-1" , "cgpt/cgpt_common.c", 454); exit(1); } } while (0) |
448 | le16toh(guid->u.Uuid.time_mid),do { if (!(snprintf(str, buflen, "%08X-%04X-%04X-%02X%02X-%02X%02X%02X%02X%02X%02X" , __uint32_identity (guid->u.Uuid.time_low), __uint16_identity (guid->u.Uuid.time_mid), __uint16_identity (guid->u.Uuid .time_high_and_version), guid->u.Uuid.clock_seq_high_and_reserved , guid->u.Uuid.clock_seq_low, guid->u.Uuid.node[0], guid ->u.Uuid.node[1], guid->u.Uuid.node[2], guid->u.Uuid .node[3], guid->u.Uuid.node[4], guid->u.Uuid.node[5]) == 37 -1)) { fprintf(stderr, "condition (%s) failed at %s:%d\n" , "snprintf(str, buflen, \"%08X-%04X-%04X-%02X%02X-%02X%02X%02X%02X%02X%02X\", le32toh(guid->u.Uuid.time_low), le16toh(guid->u.Uuid.time_mid), le16toh(guid->u.Uuid.time_high_and_version), guid->u.Uuid.clock_seq_high_and_reserved, guid->u.Uuid.clock_seq_low, guid->u.Uuid.node[0], guid->u.Uuid.node[1], guid->u.Uuid.node[2], guid->u.Uuid.node[3], guid->u.Uuid.node[4], guid->u.Uuid.node[5]) == GUID_STRLEN-1" , "cgpt/cgpt_common.c", 454); exit(1); } } while (0) |
449 | le16toh(guid->u.Uuid.time_high_and_version),do { if (!(snprintf(str, buflen, "%08X-%04X-%04X-%02X%02X-%02X%02X%02X%02X%02X%02X" , __uint32_identity (guid->u.Uuid.time_low), __uint16_identity (guid->u.Uuid.time_mid), __uint16_identity (guid->u.Uuid .time_high_and_version), guid->u.Uuid.clock_seq_high_and_reserved , guid->u.Uuid.clock_seq_low, guid->u.Uuid.node[0], guid ->u.Uuid.node[1], guid->u.Uuid.node[2], guid->u.Uuid .node[3], guid->u.Uuid.node[4], guid->u.Uuid.node[5]) == 37 -1)) { fprintf(stderr, "condition (%s) failed at %s:%d\n" , "snprintf(str, buflen, \"%08X-%04X-%04X-%02X%02X-%02X%02X%02X%02X%02X%02X\", le32toh(guid->u.Uuid.time_low), le16toh(guid->u.Uuid.time_mid), le16toh(guid->u.Uuid.time_high_and_version), guid->u.Uuid.clock_seq_high_and_reserved, guid->u.Uuid.clock_seq_low, guid->u.Uuid.node[0], guid->u.Uuid.node[1], guid->u.Uuid.node[2], guid->u.Uuid.node[3], guid->u.Uuid.node[4], guid->u.Uuid.node[5]) == GUID_STRLEN-1" , "cgpt/cgpt_common.c", 454); exit(1); } } while (0) |
450 | guid->u.Uuid.clock_seq_high_and_reserved,do { if (!(snprintf(str, buflen, "%08X-%04X-%04X-%02X%02X-%02X%02X%02X%02X%02X%02X" , __uint32_identity (guid->u.Uuid.time_low), __uint16_identity (guid->u.Uuid.time_mid), __uint16_identity (guid->u.Uuid .time_high_and_version), guid->u.Uuid.clock_seq_high_and_reserved , guid->u.Uuid.clock_seq_low, guid->u.Uuid.node[0], guid ->u.Uuid.node[1], guid->u.Uuid.node[2], guid->u.Uuid .node[3], guid->u.Uuid.node[4], guid->u.Uuid.node[5]) == 37 -1)) { fprintf(stderr, "condition (%s) failed at %s:%d\n" , "snprintf(str, buflen, \"%08X-%04X-%04X-%02X%02X-%02X%02X%02X%02X%02X%02X\", le32toh(guid->u.Uuid.time_low), le16toh(guid->u.Uuid.time_mid), le16toh(guid->u.Uuid.time_high_and_version), guid->u.Uuid.clock_seq_high_and_reserved, guid->u.Uuid.clock_seq_low, guid->u.Uuid.node[0], guid->u.Uuid.node[1], guid->u.Uuid.node[2], guid->u.Uuid.node[3], guid->u.Uuid.node[4], guid->u.Uuid.node[5]) == GUID_STRLEN-1" , "cgpt/cgpt_common.c", 454); exit(1); } } while (0) |
451 | guid->u.Uuid.clock_seq_low,do { if (!(snprintf(str, buflen, "%08X-%04X-%04X-%02X%02X-%02X%02X%02X%02X%02X%02X" , __uint32_identity (guid->u.Uuid.time_low), __uint16_identity (guid->u.Uuid.time_mid), __uint16_identity (guid->u.Uuid .time_high_and_version), guid->u.Uuid.clock_seq_high_and_reserved , guid->u.Uuid.clock_seq_low, guid->u.Uuid.node[0], guid ->u.Uuid.node[1], guid->u.Uuid.node[2], guid->u.Uuid .node[3], guid->u.Uuid.node[4], guid->u.Uuid.node[5]) == 37 -1)) { fprintf(stderr, "condition (%s) failed at %s:%d\n" , "snprintf(str, buflen, \"%08X-%04X-%04X-%02X%02X-%02X%02X%02X%02X%02X%02X\", le32toh(guid->u.Uuid.time_low), le16toh(guid->u.Uuid.time_mid), le16toh(guid->u.Uuid.time_high_and_version), guid->u.Uuid.clock_seq_high_and_reserved, guid->u.Uuid.clock_seq_low, guid->u.Uuid.node[0], guid->u.Uuid.node[1], guid->u.Uuid.node[2], guid->u.Uuid.node[3], guid->u.Uuid.node[4], guid->u.Uuid.node[5]) == GUID_STRLEN-1" , "cgpt/cgpt_common.c", 454); exit(1); } } while (0) |
452 | guid->u.Uuid.node[0], guid->u.Uuid.node[1],do { if (!(snprintf(str, buflen, "%08X-%04X-%04X-%02X%02X-%02X%02X%02X%02X%02X%02X" , __uint32_identity (guid->u.Uuid.time_low), __uint16_identity (guid->u.Uuid.time_mid), __uint16_identity (guid->u.Uuid .time_high_and_version), guid->u.Uuid.clock_seq_high_and_reserved , guid->u.Uuid.clock_seq_low, guid->u.Uuid.node[0], guid ->u.Uuid.node[1], guid->u.Uuid.node[2], guid->u.Uuid .node[3], guid->u.Uuid.node[4], guid->u.Uuid.node[5]) == 37 -1)) { fprintf(stderr, "condition (%s) failed at %s:%d\n" , "snprintf(str, buflen, \"%08X-%04X-%04X-%02X%02X-%02X%02X%02X%02X%02X%02X\", le32toh(guid->u.Uuid.time_low), le16toh(guid->u.Uuid.time_mid), le16toh(guid->u.Uuid.time_high_and_version), guid->u.Uuid.clock_seq_high_and_reserved, guid->u.Uuid.clock_seq_low, guid->u.Uuid.node[0], guid->u.Uuid.node[1], guid->u.Uuid.node[2], guid->u.Uuid.node[3], guid->u.Uuid.node[4], guid->u.Uuid.node[5]) == GUID_STRLEN-1" , "cgpt/cgpt_common.c", 454); exit(1); } } while (0) |
453 | guid->u.Uuid.node[2], guid->u.Uuid.node[3],do { if (!(snprintf(str, buflen, "%08X-%04X-%04X-%02X%02X-%02X%02X%02X%02X%02X%02X" , __uint32_identity (guid->u.Uuid.time_low), __uint16_identity (guid->u.Uuid.time_mid), __uint16_identity (guid->u.Uuid .time_high_and_version), guid->u.Uuid.clock_seq_high_and_reserved , guid->u.Uuid.clock_seq_low, guid->u.Uuid.node[0], guid ->u.Uuid.node[1], guid->u.Uuid.node[2], guid->u.Uuid .node[3], guid->u.Uuid.node[4], guid->u.Uuid.node[5]) == 37 -1)) { fprintf(stderr, "condition (%s) failed at %s:%d\n" , "snprintf(str, buflen, \"%08X-%04X-%04X-%02X%02X-%02X%02X%02X%02X%02X%02X\", le32toh(guid->u.Uuid.time_low), le16toh(guid->u.Uuid.time_mid), le16toh(guid->u.Uuid.time_high_and_version), guid->u.Uuid.clock_seq_high_and_reserved, guid->u.Uuid.clock_seq_low, guid->u.Uuid.node[0], guid->u.Uuid.node[1], guid->u.Uuid.node[2], guid->u.Uuid.node[3], guid->u.Uuid.node[4], guid->u.Uuid.node[5]) == GUID_STRLEN-1" , "cgpt/cgpt_common.c", 454); exit(1); } } while (0) |
454 | guid->u.Uuid.node[4], guid->u.Uuid.node[5]) == GUID_STRLEN-1)do { if (!(snprintf(str, buflen, "%08X-%04X-%04X-%02X%02X-%02X%02X%02X%02X%02X%02X" , __uint32_identity (guid->u.Uuid.time_low), __uint16_identity (guid->u.Uuid.time_mid), __uint16_identity (guid->u.Uuid .time_high_and_version), guid->u.Uuid.clock_seq_high_and_reserved , guid->u.Uuid.clock_seq_low, guid->u.Uuid.node[0], guid ->u.Uuid.node[1], guid->u.Uuid.node[2], guid->u.Uuid .node[3], guid->u.Uuid.node[4], guid->u.Uuid.node[5]) == 37 -1)) { fprintf(stderr, "condition (%s) failed at %s:%d\n" , "snprintf(str, buflen, \"%08X-%04X-%04X-%02X%02X-%02X%02X%02X%02X%02X%02X\", le32toh(guid->u.Uuid.time_low), le16toh(guid->u.Uuid.time_mid), le16toh(guid->u.Uuid.time_high_and_version), guid->u.Uuid.clock_seq_high_and_reserved, guid->u.Uuid.clock_seq_low, guid->u.Uuid.node[0], guid->u.Uuid.node[1], guid->u.Uuid.node[2], guid->u.Uuid.node[3], guid->u.Uuid.node[4], guid->u.Uuid.node[5]) == GUID_STRLEN-1" , "cgpt/cgpt_common.c", 454); exit(1); } } while (0); |
455 | } |
456 | |
457 | /* Convert possibly unterminated UTF16 string to UTF8. |
458 | * Caller must prepare enough space for UTF8, which could be up to |
459 | * twice the byte length of UTF16 string plus the terminating '\0'. |
460 | * See the following table for encoding lengths. |
461 | * |
462 | * Code point UTF16 UTF8 |
463 | * 0x0000-0x007F 2 bytes 1 byte |
464 | * 0x0080-0x07FF 2 bytes 2 bytes |
465 | * 0x0800-0xFFFF 2 bytes 3 bytes |
466 | * 0x10000-0x10FFFF 4 bytes 4 bytes |
467 | * |
468 | * This function uses a simple state meachine to convert UTF-16 char(s) to |
469 | * a code point. Once a code point is parsed out, the state machine throws |
470 | * out sequencial UTF-8 chars in one time. |
471 | * |
472 | * Return: CGPT_OK --- all character are converted successfully. |
473 | * CGPT_FAILED --- convert error, i.e. output buffer is too short. |
474 | */ |
475 | int UTF16ToUTF8(const uint16_t *utf16, unsigned int maxinput, |
476 | uint8_t *utf8, unsigned int maxoutput) |
477 | { |
478 | size_t s16idx, s8idx; |
479 | uint32_t code_point = 0; |
480 | int code_point_ready = 1; // code point is ready to output. |
481 | int retval = CGPT_OK; |
482 | |
483 | if (!utf16 || !maxinput || !utf8 || !maxoutput) |
484 | return CGPT_FAILED; |
485 | |
486 | maxoutput--; /* plan for termination now */ |
487 | |
488 | for (s16idx = s8idx = 0; |
489 | s16idx < maxinput && utf16[s16idx] && maxoutput; |
490 | s16idx++) { |
491 | uint16_t codeunit = le16toh(utf16[s16idx])__uint16_identity (utf16[s16idx]); |
492 | |
493 | if (code_point_ready) { |
494 | if (codeunit >= 0xD800 && codeunit <= 0xDBFF) { |
495 | /* high surrogate, need the low surrogate. */ |
496 | code_point_ready = 0; |
497 | code_point = (codeunit & 0x03FF) + 0x0040; |
498 | } else { |
499 | /* BMP char, output it. */ |
500 | code_point = codeunit; |
501 | } |
502 | } else { |
503 | /* expect the low surrogate */ |
504 | if (codeunit >= 0xDC00 && codeunit <= 0xDFFF) { |
505 | code_point = (code_point << 10) | (codeunit & 0x03FF); |
506 | code_point_ready = 1; |
507 | } else { |
508 | /* the second code unit is NOT the low surrogate. Unexpected. */ |
509 | code_point_ready = 0; |
Value stored to 'code_point_ready' is never read | |
510 | retval = CGPT_FAILED; |
511 | break; |
512 | } |
513 | } |
514 | |
515 | /* If UTF code point is ready, output it. */ |
516 | if (code_point_ready) { |
517 | require(code_point <= 0x10FFFF)do { if (!(code_point <= 0x10FFFF)) { fprintf(stderr, "condition (%s) failed at %s:%d\n" , "code_point <= 0x10FFFF", "cgpt/cgpt_common.c", 517); exit (1); } } while (0); |
518 | if (code_point <= 0x7F && maxoutput >= 1) { |
519 | maxoutput -= 1; |
520 | utf8[s8idx++] = code_point & 0x7F; |
521 | } else if (code_point <= 0x7FF && maxoutput >= 2) { |
522 | maxoutput -= 2; |
523 | utf8[s8idx++] = 0xC0 | (code_point >> 6); |
524 | utf8[s8idx++] = 0x80 | (code_point & 0x3F); |
525 | } else if (code_point <= 0xFFFF && maxoutput >= 3) { |
526 | maxoutput -= 3; |
527 | utf8[s8idx++] = 0xE0 | (code_point >> 12); |
528 | utf8[s8idx++] = 0x80 | ((code_point >> 6) & 0x3F); |
529 | utf8[s8idx++] = 0x80 | (code_point & 0x3F); |
530 | } else if (code_point <= 0x10FFFF && maxoutput >= 4) { |
531 | maxoutput -= 4; |
532 | utf8[s8idx++] = 0xF0 | (code_point >> 18); |
533 | utf8[s8idx++] = 0x80 | ((code_point >> 12) & 0x3F); |
534 | utf8[s8idx++] = 0x80 | ((code_point >> 6) & 0x3F); |
535 | utf8[s8idx++] = 0x80 | (code_point & 0x3F); |
536 | } else { |
537 | /* buffer underrun */ |
538 | retval = CGPT_FAILED; |
539 | break; |
540 | } |
541 | } |
542 | } |
543 | utf8[s8idx++] = 0; |
544 | return retval; |
545 | } |
546 | |
547 | /* Convert UTF8 string to UTF16. The UTF8 string must be null-terminated. |
548 | * Caller must prepare enough space for UTF16, including a terminating 0x0000. |
549 | * See the following table for encoding lengths. In any case, the caller |
550 | * just needs to prepare the byte length of UTF8 plus the terminating 0x0000. |
551 | * |
552 | * Code point UTF16 UTF8 |
553 | * 0x0000-0x007F 2 bytes 1 byte |
554 | * 0x0080-0x07FF 2 bytes 2 bytes |
555 | * 0x0800-0xFFFF 2 bytes 3 bytes |
556 | * 0x10000-0x10FFFF 4 bytes 4 bytes |
557 | * |
558 | * This function converts UTF8 chars to a code point first. Then, convrts it |
559 | * to UTF16 code unit(s). |
560 | * |
561 | * Return: CGPT_OK --- all character are converted successfully. |
562 | * CGPT_FAILED --- convert error, i.e. output buffer is too short. |
563 | */ |
564 | int UTF8ToUTF16(const uint8_t *utf8, uint16_t *utf16, unsigned int maxoutput) |
565 | { |
566 | size_t s16idx, s8idx; |
567 | uint32_t code_point = 0; |
568 | unsigned int expected_units = 1; |
569 | unsigned int decoded_units = 1; |
570 | int retval = CGPT_OK; |
571 | |
572 | if (!utf8 || !utf16 || !maxoutput) |
573 | return CGPT_FAILED; |
574 | |
575 | maxoutput--; /* plan for termination */ |
576 | |
577 | for (s8idx = s16idx = 0; |
578 | utf8[s8idx] && maxoutput; |
579 | s8idx++) { |
580 | uint8_t code_unit; |
581 | code_unit = utf8[s8idx]; |
582 | |
583 | if (expected_units != decoded_units) { |
584 | /* Trailing bytes of multi-byte character */ |
585 | if ((code_unit & 0xC0) == 0x80) { |
586 | code_point = (code_point << 6) | (code_unit & 0x3F); |
587 | ++decoded_units; |
588 | } else { |
589 | /* Unexpected code unit. */ |
590 | retval = CGPT_FAILED; |
591 | break; |
592 | } |
593 | } else { |
594 | /* parsing a new code point. */ |
595 | decoded_units = 1; |
596 | if (code_unit <= 0x7F) { |
597 | code_point = code_unit; |
598 | expected_units = 1; |
599 | } else if (code_unit <= 0xBF) { |
600 | /* 0x80-0xBF must NOT be the heading byte unit of a new code point. */ |
601 | retval = CGPT_FAILED; |
602 | break; |
603 | } else if (code_unit >= 0xC2 && code_unit <= 0xDF) { |
604 | code_point = code_unit & 0x1F; |
605 | expected_units = 2; |
606 | } else if (code_unit >= 0xE0 && code_unit <= 0xEF) { |
607 | code_point = code_unit & 0x0F; |
608 | expected_units = 3; |
609 | } else if (code_unit >= 0xF0 && code_unit <= 0xF4) { |
610 | code_point = code_unit & 0x07; |
611 | expected_units = 4; |
612 | } else { |
613 | /* illegal code unit: 0xC0-0xC1, 0xF5-0xFF */ |
614 | retval = CGPT_FAILED; |
615 | break; |
616 | } |
617 | } |
618 | |
619 | /* If no more unit is needed, output the UTF16 unit(s). */ |
620 | if ((retval == CGPT_OK) && |
621 | (expected_units == decoded_units)) { |
622 | /* Check if the encoding is the shortest possible UTF-8 sequence. */ |
623 | switch (expected_units) { |
624 | case 2: |
625 | if (code_point <= 0x7F) retval = CGPT_FAILED; |
626 | break; |
627 | case 3: |
628 | if (code_point <= 0x7FF) retval = CGPT_FAILED; |
629 | break; |
630 | case 4: |
631 | if (code_point <= 0xFFFF) retval = CGPT_FAILED; |
632 | break; |
633 | } |
634 | if (retval == CGPT_FAILED) break; /* leave immediately */ |
635 | |
636 | if ((code_point <= 0xD7FF) || |
637 | (code_point >= 0xE000 && code_point <= 0xFFFF)) { |
638 | utf16[s16idx++] = code_point; |
639 | maxoutput -= 1; |
640 | } else if (code_point >= 0x10000 && code_point <= 0x10FFFF && |
641 | maxoutput >= 2) { |
642 | utf16[s16idx++] = 0xD800 | ((code_point >> 10) - 0x0040); |
643 | utf16[s16idx++] = 0xDC00 | (code_point & 0x03FF); |
644 | maxoutput -= 2; |
645 | } else { |
646 | /* Three possibilities fall into here. Both are failure cases. |
647 | * a. surrogate pair (non-BMP characters; 0xD800~0xDFFF) |
648 | * b. invalid code point > 0x10FFFF |
649 | * c. buffer underrun |
650 | */ |
651 | retval = CGPT_FAILED; |
652 | break; |
653 | } |
654 | } |
655 | } |
656 | |
657 | /* A null-terminator shows up before the UTF8 sequence ends. */ |
658 | if (expected_units != decoded_units) { |
659 | retval = CGPT_FAILED; |
660 | } |
661 | |
662 | utf16[s16idx++] = 0; |
663 | return retval; |
664 | } |
665 | |
666 | /* global types to compare against */ |
667 | const Guid guid_chromeos_firmware = GPT_ENT_TYPE_CHROMEOS_FIRMWARE{{{0xcab6e88e,0xabf3,0x4102,0xa0,0x7a,{0xd4,0xbb,0x9b,0xe3,0xc1 ,0xd3}}}}; |
668 | const Guid guid_chromeos_kernel = GPT_ENT_TYPE_CHROMEOS_KERNEL{{{0xfe3a2a5d,0x4f32,0x41a7,0xb7,0x25,{0xac,0xcc,0x32,0x85,0xa3 ,0x09}}}}; |
669 | const Guid guid_chromeos_rootfs = GPT_ENT_TYPE_CHROMEOS_ROOTFS{{{0x3cb8e202,0x3b7e,0x47dd,0x8a,0x3c,{0x7f,0xf2,0xa1,0x3c,0xfc ,0xec}}}}; |
670 | const Guid guid_basic_data = GPT_ENT_TYPE_BASIC_DATA{{{0xebd0a0a2,0xb9e5,0x4433,0x87,0xc0,{0x68,0xb6,0xb7,0x26,0x99 ,0xc7}}}}; |
671 | const Guid guid_linux_data = GPT_ENT_TYPE_LINUX_FS{{{0x0fc63daf,0x8483,0x4772,0x8e,0x79,{0x3d,0x69,0xd8,0x47,0x7d ,0xe4}}}}; |
672 | const Guid guid_chromeos_reserved = GPT_ENT_TYPE_CHROMEOS_RESERVED{{{0x2e0a753d,0x9e48,0x43b0,0x83,0x37,{0xb1,0x51,0x92,0xcb,0x1b ,0x5e}}}}; |
673 | const Guid guid_efi = GPT_ENT_TYPE_EFI{{{0xc12a7328,0xf81f,0x11d2,0xba,0x4b,{0x00,0xa0,0xc9,0x3e,0xc9 ,0x3b}}}}; |
674 | const Guid guid_unused = GPT_ENT_TYPE_UNUSED{{{0x00000000,0x0000,0x0000,0x00,0x00,{0x00,0x00,0x00,0x00,0x00 ,0x00}}}}; |
675 | const Guid guid_chromeos_minios = GPT_ENT_TYPE_CHROMEOS_MINIOS{{{0x09845860,0x705f,0x4bb5,0xb1,0x6c,{0x8a,0x8a,0x09,0x9c,0xaf ,0x52}}}}; |
676 | const Guid guid_chromeos_hibernate = GPT_ENT_TYPE_CHROMEOS_HIBERNATE{{{0x3f0f8318,0xf146,0x4e6b,0x82,0x22,{0xc2,0x8c,0x8f,0x02,0xe0 ,0xd5}}}}; |
677 | |
678 | static const struct { |
679 | const Guid *type; |
680 | const char *name; |
681 | const char *description; |
682 | } supported_types[] = { |
683 | {&guid_chromeos_firmware, "firmware", "ChromeOS firmware"}, |
684 | {&guid_chromeos_kernel, "kernel", "ChromeOS kernel"}, |
685 | {&guid_chromeos_rootfs, "rootfs", "ChromeOS rootfs"}, |
686 | {&guid_linux_data, "data", "Linux data"}, |
687 | {&guid_basic_data, "basicdata", "Basic data"}, |
688 | {&guid_chromeos_reserved, "reserved", "ChromeOS reserved"}, |
689 | {&guid_efi, "efi", "EFI System Partition"}, |
690 | {&guid_unused, "unused", "Unused (nonexistent) partition"}, |
691 | {&guid_chromeos_minios, "minios", "ChromeOS miniOS"}, |
692 | {&guid_chromeos_hibernate, "hibernate", "ChromeOS hibernate"}, |
693 | }; |
694 | |
695 | /* Resolves human-readable GPT type. |
696 | * Returns CGPT_OK if found. |
697 | * Returns CGPT_FAILED if no known type found. */ |
698 | int ResolveType(const Guid *type, char *buf) { |
699 | int i; |
700 | for (i = 0; i < ARRAY_COUNT(supported_types)(sizeof(supported_types)/sizeof((supported_types)[0])); ++i) { |
701 | if (!memcmp(type, supported_types[i].type, sizeof(Guid))) { |
702 | strcpy(buf, supported_types[i].description); |
703 | return CGPT_OK; |
704 | } |
705 | } |
706 | return CGPT_FAILED; |
707 | } |
708 | |
709 | int SupportedType(const char *name, Guid *type) { |
710 | int i; |
711 | for (i = 0; i < ARRAY_COUNT(supported_types)(sizeof(supported_types)/sizeof((supported_types)[0])); ++i) { |
712 | if (!strcmp(name, supported_types[i].name)) { |
713 | memcpy(type, supported_types[i].type, sizeof(Guid)); |
714 | return CGPT_OK; |
715 | } |
716 | } |
717 | return CGPT_FAILED; |
718 | } |
719 | |
720 | void PrintTypes(void) { |
721 | int i; |
722 | printf("The partition type may also be given as one of these aliases:\n\n"); |
723 | for (i = 0; i < ARRAY_COUNT(supported_types)(sizeof(supported_types)/sizeof((supported_types)[0])); ++i) { |
724 | printf(" %-10s %s\n", supported_types[i].name, |
725 | supported_types[i].description); |
726 | } |
727 | printf("\n"); |
728 | } |
729 | |
730 | static GptHeader* GetGptHeader(const GptData *gpt) { |
731 | if (gpt->valid_headers & MASK_PRIMARY) |
732 | return (GptHeader*)gpt->primary_header; |
733 | else if (gpt->valid_headers & MASK_SECONDARY) |
734 | return (GptHeader*)gpt->secondary_header; |
735 | else |
736 | return 0; |
737 | } |
738 | |
739 | uint32_t GetNumberOfEntries(const struct drive *drive) { |
740 | GptHeader *header = GetGptHeader(&drive->gpt); |
741 | if (!header) |
742 | return 0; |
743 | return header->number_of_entries; |
744 | } |
745 | |
746 | |
747 | GptEntry *GetEntry(GptData *gpt, int secondary, uint32_t entry_index) { |
748 | GptHeader *header = GetGptHeader(gpt); |
749 | uint8_t *entries; |
750 | uint32_t stride = header->size_of_entry; |
751 | require(stride)do { if (!(stride)) { fprintf(stderr, "condition (%s) failed at %s:%d\n" , "stride", "cgpt/cgpt_common.c", 751); exit(1); } } while (0 ); |
752 | require(entry_index < header->number_of_entries)do { if (!(entry_index < header->number_of_entries)) { fprintf (stderr, "condition (%s) failed at %s:%d\n", "entry_index < header->number_of_entries" , "cgpt/cgpt_common.c", 752); exit(1); } } while (0); |
753 | |
754 | if (secondary == PRIMARY) { |
755 | entries = gpt->primary_entries; |
756 | } else if (secondary == SECONDARY) { |
757 | entries = gpt->secondary_entries; |
758 | } else { /* ANY_VALID */ |
759 | require(secondary == ANY_VALID)do { if (!(secondary == ANY_VALID)) { fprintf(stderr, "condition (%s) failed at %s:%d\n" , "secondary == ANY_VALID", "cgpt/cgpt_common.c", 759); exit( 1); } } while (0); |
760 | if (gpt->valid_entries & MASK_PRIMARY) { |
761 | entries = gpt->primary_entries; |
762 | } else { |
763 | require(gpt->valid_entries & MASK_SECONDARY)do { if (!(gpt->valid_entries & MASK_SECONDARY)) { fprintf (stderr, "condition (%s) failed at %s:%d\n", "gpt->valid_entries & MASK_SECONDARY" , "cgpt/cgpt_common.c", 763); exit(1); } } while (0); |
764 | entries = gpt->secondary_entries; |
765 | } |
766 | } |
767 | |
768 | return (GptEntry*)(&entries[stride * entry_index]); |
769 | } |
770 | |
771 | void SetRequired(struct drive *drive, int secondary, uint32_t entry_index, |
772 | int required) { |
773 | require(required >= 0 && required <= CGPT_ATTRIBUTE_MAX_REQUIRED)do { if (!(required >= 0 && required <= (1ULL)) ) { fprintf(stderr, "condition (%s) failed at %s:%d\n", "required >= 0 && required <= CGPT_ATTRIBUTE_MAX_REQUIRED" , "cgpt/cgpt_common.c", 773); exit(1); } } while (0); |
774 | GptEntry *entry; |
775 | entry = GetEntry(&drive->gpt, secondary, entry_index); |
776 | SetEntryRequired(entry, required); |
777 | } |
778 | |
779 | int GetRequired(struct drive *drive, int secondary, uint32_t entry_index) { |
780 | GptEntry *entry; |
781 | entry = GetEntry(&drive->gpt, secondary, entry_index); |
782 | return GetEntryRequired(entry); |
783 | } |
784 | |
785 | void SetLegacyBoot(struct drive *drive, int secondary, uint32_t entry_index, |
786 | int legacy_boot) { |
787 | require(legacy_boot >= 0 && legacy_boot <= CGPT_ATTRIBUTE_MAX_LEGACY_BOOT)do { if (!(legacy_boot >= 0 && legacy_boot <= ( 1ULL))) { fprintf(stderr, "condition (%s) failed at %s:%d\n", "legacy_boot >= 0 && legacy_boot <= CGPT_ATTRIBUTE_MAX_LEGACY_BOOT" , "cgpt/cgpt_common.c", 787); exit(1); } } while (0); |
788 | GptEntry *entry; |
789 | entry = GetEntry(&drive->gpt, secondary, entry_index); |
790 | SetEntryLegacyBoot(entry, legacy_boot); |
791 | } |
792 | |
793 | int GetLegacyBoot(struct drive *drive, int secondary, uint32_t entry_index) { |
794 | GptEntry *entry; |
795 | entry = GetEntry(&drive->gpt, secondary, entry_index); |
796 | return GetEntryLegacyBoot(entry); |
797 | } |
798 | |
799 | void SetPriority(struct drive *drive, int secondary, uint32_t entry_index, |
800 | int priority) { |
801 | require(priority >= 0 && priority <= CGPT_ATTRIBUTE_MAX_PRIORITY)do { if (!(priority >= 0 && priority <= (15ULL) )) { fprintf(stderr, "condition (%s) failed at %s:%d\n", "priority >= 0 && priority <= CGPT_ATTRIBUTE_MAX_PRIORITY" , "cgpt/cgpt_common.c", 801); exit(1); } } while (0); |
802 | GptEntry *entry; |
803 | entry = GetEntry(&drive->gpt, secondary, entry_index); |
804 | SetEntryPriority(entry, priority); |
805 | } |
806 | |
807 | int GetPriority(struct drive *drive, int secondary, uint32_t entry_index) { |
808 | GptEntry *entry; |
809 | entry = GetEntry(&drive->gpt, secondary, entry_index); |
810 | return GetEntryPriority(entry); |
811 | } |
812 | |
813 | void SetTries(struct drive *drive, int secondary, uint32_t entry_index, |
814 | int tries) { |
815 | require(tries >= 0 && tries <= CGPT_ATTRIBUTE_MAX_TRIES)do { if (!(tries >= 0 && tries <= (15ULL))) { fprintf (stderr, "condition (%s) failed at %s:%d\n", "tries >= 0 && tries <= CGPT_ATTRIBUTE_MAX_TRIES" , "cgpt/cgpt_common.c", 815); exit(1); } } while (0); |
816 | GptEntry *entry; |
817 | entry = GetEntry(&drive->gpt, secondary, entry_index); |
818 | SetEntryTries(entry, tries); |
819 | } |
820 | |
821 | int GetTries(struct drive *drive, int secondary, uint32_t entry_index) { |
822 | GptEntry *entry; |
823 | entry = GetEntry(&drive->gpt, secondary, entry_index); |
824 | return GetEntryTries(entry); |
825 | } |
826 | |
827 | void SetSuccessful(struct drive *drive, int secondary, uint32_t entry_index, |
828 | int success) { |
829 | require(success >= 0 && success <= CGPT_ATTRIBUTE_MAX_SUCCESSFUL)do { if (!(success >= 0 && success <= (1ULL))) { fprintf(stderr, "condition (%s) failed at %s:%d\n", "success >= 0 && success <= CGPT_ATTRIBUTE_MAX_SUCCESSFUL" , "cgpt/cgpt_common.c", 829); exit(1); } } while (0); |
830 | GptEntry *entry; |
831 | entry = GetEntry(&drive->gpt, secondary, entry_index); |
832 | SetEntrySuccessful(entry, success); |
833 | } |
834 | |
835 | int GetSuccessful(struct drive *drive, int secondary, uint32_t entry_index) { |
836 | GptEntry *entry; |
837 | entry = GetEntry(&drive->gpt, secondary, entry_index); |
838 | return GetEntrySuccessful(entry); |
839 | } |
840 | |
841 | void SetErrorCounter(struct drive *drive, int secondary, uint32_t entry_index, |
842 | int error_counter) { |
843 | require(error_counter >= 0 &&do { if (!(error_counter >= 0 && error_counter <= (1ULL))) { fprintf(stderr, "condition (%s) failed at %s:%d\n" , "error_counter >= 0 && error_counter <= CGPT_ATTRIBUTE_MAX_ERROR_COUNTER" , "cgpt/cgpt_common.c", 844); exit(1); } } while (0) |
844 | error_counter <= CGPT_ATTRIBUTE_MAX_ERROR_COUNTER)do { if (!(error_counter >= 0 && error_counter <= (1ULL))) { fprintf(stderr, "condition (%s) failed at %s:%d\n" , "error_counter >= 0 && error_counter <= CGPT_ATTRIBUTE_MAX_ERROR_COUNTER" , "cgpt/cgpt_common.c", 844); exit(1); } } while (0); |
845 | GptEntry *entry; |
846 | entry = GetEntry(&drive->gpt, secondary, entry_index); |
847 | SetEntryErrorCounter(entry, error_counter); |
848 | } |
849 | |
850 | int GetErrorCounter(struct drive *drive, int secondary, uint32_t entry_index) { |
851 | GptEntry *entry; |
852 | entry = GetEntry(&drive->gpt, secondary, entry_index); |
853 | return GetEntryErrorCounter(entry); |
854 | } |
855 | |
856 | void SetRaw(struct drive *drive, int secondary, uint32_t entry_index, |
857 | uint32_t raw) { |
858 | GptEntry *entry; |
859 | entry = GetEntry(&drive->gpt, secondary, entry_index); |
860 | entry->attrs.fields.gpt_att = (uint16_t)raw; |
861 | } |
862 | |
863 | void UpdateAllEntries(struct drive *drive) { |
864 | RepairEntries(&drive->gpt, MASK_PRIMARY); |
865 | RepairHeader(&drive->gpt, MASK_PRIMARY); |
866 | |
867 | drive->gpt.modified |= (GPT_MODIFIED_HEADER10x01 | GPT_MODIFIED_ENTRIES10x04 | |
868 | GPT_MODIFIED_HEADER20x02 | GPT_MODIFIED_ENTRIES20x08); |
869 | UpdateCrc(&drive->gpt); |
870 | } |
871 | |
872 | int IsUnused(struct drive *drive, int secondary, uint32_t index) { |
873 | GptEntry *entry; |
874 | entry = GetEntry(&drive->gpt, secondary, index); |
875 | return GuidIsZero(&entry->type); |
876 | } |
877 | |
878 | int IsKernel(struct drive *drive, int secondary, uint32_t index) { |
879 | GptEntry *entry; |
880 | entry = GetEntry(&drive->gpt, secondary, index); |
881 | return GuidEqual(&entry->type, &guid_chromeos_kernel); |
882 | } |
883 | |
884 | |
885 | #define TOSTRING(A)"A" #A |
886 | const char *GptError(int errnum) { |
887 | const char *error_string[] = { |
888 | TOSTRING(GPT_SUCCESS)"GPT_SUCCESS", |
889 | TOSTRING(GPT_ERROR_NO_VALID_KERNEL)"GPT_ERROR_NO_VALID_KERNEL", |
890 | TOSTRING(GPT_ERROR_INVALID_HEADERS)"GPT_ERROR_INVALID_HEADERS", |
891 | TOSTRING(GPT_ERROR_INVALID_ENTRIES)"GPT_ERROR_INVALID_ENTRIES", |
892 | TOSTRING(GPT_ERROR_INVALID_SECTOR_SIZE)"GPT_ERROR_INVALID_SECTOR_SIZE", |
893 | TOSTRING(GPT_ERROR_INVALID_SECTOR_NUMBER)"GPT_ERROR_INVALID_SECTOR_NUMBER", |
894 | TOSTRING(GPT_ERROR_INVALID_UPDATE_TYPE)"GPT_ERROR_INVALID_UPDATE_TYPE" |
895 | }; |
896 | if (errnum < 0 || errnum >= ARRAY_COUNT(error_string)(sizeof(error_string)/sizeof((error_string)[0]))) |
897 | return "<illegal value>"; |
898 | return error_string[errnum]; |
899 | } |
900 | |
901 | /* Update CRC value if necessary. */ |
902 | void UpdateCrc(GptData *gpt) { |
903 | GptHeader *primary_header, *secondary_header; |
904 | |
905 | primary_header = (GptHeader*)gpt->primary_header; |
906 | secondary_header = (GptHeader*)gpt->secondary_header; |
907 | |
908 | if (gpt->modified & GPT_MODIFIED_ENTRIES10x04 && |
909 | memcmp(primary_header, GPT_HEADER_SIGNATURE2"CHROMEOS", |
910 | GPT_HEADER_SIGNATURE_SIZE8)) { |
911 | size_t entries_size = primary_header->size_of_entry * |
912 | primary_header->number_of_entries; |
913 | primary_header->entries_crc32 = |
914 | Crc32(gpt->primary_entries, entries_size); |
915 | } |
916 | if (gpt->modified & GPT_MODIFIED_ENTRIES20x08) { |
917 | size_t entries_size = secondary_header->size_of_entry * |
918 | secondary_header->number_of_entries; |
919 | secondary_header->entries_crc32 = |
920 | Crc32(gpt->secondary_entries, entries_size); |
921 | } |
922 | if (gpt->modified & GPT_MODIFIED_HEADER10x01) { |
923 | primary_header->header_crc32 = 0; |
924 | primary_header->header_crc32 = Crc32( |
925 | (const uint8_t *)primary_header, sizeof(GptHeader)); |
926 | } |
927 | if (gpt->modified & GPT_MODIFIED_HEADER20x02) { |
928 | secondary_header->header_crc32 = 0; |
929 | secondary_header->header_crc32 = Crc32( |
930 | (const uint8_t *)secondary_header, sizeof(GptHeader)); |
931 | } |
932 | } |
933 | /* Two headers are NOT bitwise identical. For example, my_lba pointers to header |
934 | * itself so that my_lba in primary and secondary is definitely different. |
935 | * Only the following fields should be identical. |
936 | * |
937 | * first_usable_lba |
938 | * last_usable_lba |
939 | * number_of_entries |
940 | * size_of_entry |
941 | * disk_uuid |
942 | * |
943 | * If any of above field are not matched, overwrite secondary with primary since |
944 | * we always trust primary. |
945 | * If any one of header is invalid, copy from another. */ |
946 | int IsSynonymous(const GptHeader* a, const GptHeader* b) { |
947 | if ((a->first_usable_lba == b->first_usable_lba) && |
948 | (a->last_usable_lba == b->last_usable_lba) && |
949 | (a->number_of_entries == b->number_of_entries) && |
950 | (a->size_of_entry == b->size_of_entry) && |
951 | (!memcmp(&a->disk_uuid, &b->disk_uuid, sizeof(Guid)))) |
952 | return 1; |
953 | return 0; |
954 | } |
955 | |
956 | /* Primary entries and secondary entries should be bitwise identical. |
957 | * If two entries tables are valid, compare them. If not the same, |
958 | * overwrites secondary with primary (primary always has higher priority), |
959 | * and marks secondary as modified. |
960 | * If only one is valid, overwrites invalid one. |
961 | * If all are invalid, does nothing. |
962 | * This function returns bit masks for GptData.modified field. |
963 | * Note that CRC is NOT re-computed in this function. |
964 | */ |
965 | uint8_t RepairEntries(GptData *gpt, const uint32_t valid_entries) { |
966 | /* If we have an alternate GPT header signature, don't overwrite |
967 | * the secondary GPT with the primary one as that might wipe the |
968 | * partition table. Also don't overwrite the primary one with the |
969 | * secondary one as that will stop Windows from booting. */ |
970 | GptHeader* h = (GptHeader*)(gpt->primary_header); |
971 | if (!memcmp(h->signature, GPT_HEADER_SIGNATURE2"CHROMEOS", GPT_HEADER_SIGNATURE_SIZE8)) |
972 | return 0; |
973 | |
974 | if (gpt->valid_headers & MASK_PRIMARY) { |
975 | h = (GptHeader*)gpt->primary_header; |
976 | } else if (gpt->valid_headers & MASK_SECONDARY) { |
977 | h = (GptHeader*)gpt->secondary_header; |
978 | } else { |
979 | /* We cannot trust any header, don't update entries. */ |
980 | return 0; |
981 | } |
982 | |
983 | size_t entries_size = h->number_of_entries * h->size_of_entry; |
984 | if (valid_entries == MASK_BOTH) { |
985 | if (memcmp(gpt->primary_entries, gpt->secondary_entries, entries_size)) { |
986 | memcpy(gpt->secondary_entries, gpt->primary_entries, entries_size); |
987 | return GPT_MODIFIED_ENTRIES20x08; |
988 | } |
989 | } else if (valid_entries == MASK_PRIMARY) { |
990 | memcpy(gpt->secondary_entries, gpt->primary_entries, entries_size); |
991 | return GPT_MODIFIED_ENTRIES20x08; |
992 | } else if (valid_entries == MASK_SECONDARY) { |
993 | memcpy(gpt->primary_entries, gpt->secondary_entries, entries_size); |
994 | return GPT_MODIFIED_ENTRIES10x04; |
995 | } |
996 | |
997 | return 0; |
998 | } |
999 | |
1000 | /* The above five fields are shared between primary and secondary headers. |
1001 | * We can recover one header from another through copying those fields. */ |
1002 | static void CopySynonymousParts(GptHeader* target, const GptHeader* source) { |
1003 | target->first_usable_lba = source->first_usable_lba; |
1004 | target->last_usable_lba = source->last_usable_lba; |
1005 | target->number_of_entries = source->number_of_entries; |
1006 | target->size_of_entry = source->size_of_entry; |
1007 | memcpy(&target->disk_uuid, &source->disk_uuid, sizeof(Guid)); |
1008 | } |
1009 | |
1010 | /* This function repairs primary and secondary headers if possible. |
1011 | * If both headers are valid (CRC32 is correct) but |
1012 | * a) indicate inconsistent usable LBA ranges, |
1013 | * b) inconsistent partition entry size and number, |
1014 | * c) inconsistent disk_uuid, |
1015 | * we will use the primary header to overwrite secondary header. |
1016 | * If primary is invalid (CRC32 is wrong), then we repair it from secondary. |
1017 | * If secondary is invalid (CRC32 is wrong), then we repair it from primary. |
1018 | * This function returns the bitmasks for modified header. |
1019 | * Note that CRC value is NOT re-computed in this function. UpdateCrc() will |
1020 | * do it later. |
1021 | */ |
1022 | uint8_t RepairHeader(GptData *gpt, const uint32_t valid_headers) { |
1023 | GptHeader *primary_header, *secondary_header; |
1024 | |
1025 | primary_header = (GptHeader*)gpt->primary_header; |
1026 | secondary_header = (GptHeader*)gpt->secondary_header; |
1027 | |
1028 | if (valid_headers == MASK_BOTH) { |
1029 | if (!IsSynonymous(primary_header, secondary_header)) { |
1030 | CopySynonymousParts(secondary_header, primary_header); |
1031 | return GPT_MODIFIED_HEADER20x02; |
1032 | } |
1033 | } else if (valid_headers == MASK_PRIMARY) { |
1034 | memcpy(secondary_header, primary_header, sizeof(GptHeader)); |
1035 | secondary_header->my_lba = gpt->gpt_drive_sectors - 1; /* the last sector */ |
1036 | secondary_header->alternate_lba = primary_header->my_lba; |
1037 | secondary_header->entries_lba = secondary_header->my_lba - |
1038 | CalculateEntriesSectors(primary_header, gpt->sector_bytes); |
1039 | return GPT_MODIFIED_HEADER20x02; |
1040 | } else if (valid_headers == MASK_SECONDARY) { |
1041 | memcpy(primary_header, secondary_header, sizeof(GptHeader)); |
1042 | primary_header->my_lba = GPT_PMBR_SECTORS1; /* the second sector on drive */ |
1043 | primary_header->alternate_lba = secondary_header->my_lba; |
1044 | /* TODO (namnguyen): Preserve (header, entries) padding space. */ |
1045 | primary_header->entries_lba = primary_header->my_lba + GPT_HEADER_SECTORS1; |
1046 | return GPT_MODIFIED_HEADER10x01; |
1047 | } |
1048 | |
1049 | return 0; |
1050 | } |
1051 | |
1052 | int CgptGetNumNonEmptyPartitions(CgptShowParams *params) { |
1053 | struct drive drive; |
1054 | int gpt_retval; |
1055 | int retval; |
1056 | |
1057 | if (params == NULL((void*)0)) |
1058 | return CGPT_FAILED; |
1059 | |
1060 | if (CGPT_OK != DriveOpen(params->drive_name, &drive, O_RDONLY00, |
1061 | params->drive_size)) |
1062 | return CGPT_FAILED; |
1063 | |
1064 | if (GPT_SUCCESS != (gpt_retval = GptValidityCheck(&drive.gpt))) { |
1065 | Error("GptValidityCheck() returned %d: %s\n", |
1066 | gpt_retval, GptError(gpt_retval)); |
1067 | retval = CGPT_FAILED; |
1068 | goto done; |
1069 | } |
1070 | |
1071 | params->num_partitions = 0; |
1072 | int numEntries = GetNumberOfEntries(&drive); |
1073 | int i; |
1074 | for(i = 0; i < numEntries; i++) { |
1075 | GptEntry *entry = GetEntry(&drive.gpt, ANY_VALID, i); |
1076 | if (GuidIsZero(&entry->type)) |
1077 | continue; |
1078 | |
1079 | params->num_partitions++; |
1080 | } |
1081 | |
1082 | retval = CGPT_OK; |
1083 | |
1084 | done: |
1085 | DriveClose(&drive, 0); |
1086 | return retval; |
1087 | } |
1088 | |
1089 | int GuidEqual(const Guid *guid1, const Guid *guid2) { |
1090 | return (0 == memcmp(guid1, guid2, sizeof(Guid))); |
1091 | } |
1092 | |
1093 | int GuidIsZero(const Guid *gp) { |
1094 | return GuidEqual(gp, &guid_unused); |
1095 | } |
1096 | |
1097 | void PMBRToStr(struct pmbr *pmbr, char *str, unsigned int buflen) { |
1098 | char buf[GUID_STRLEN37]; |
1099 | if (GuidIsZero(&pmbr->boot_guid)) { |
1100 | require(snprintf(str, buflen, "PMBR") < buflen)do { if (!(snprintf(str, buflen, "PMBR") < buflen)) { fprintf (stderr, "condition (%s) failed at %s:%d\n", "snprintf(str, buflen, \"PMBR\") < buflen" , "cgpt/cgpt_common.c", 1100); exit(1); } } while (0); |
1101 | } else { |
1102 | GuidToStr(&pmbr->boot_guid, buf, sizeof(buf)); |
1103 | require(snprintf(str, buflen, "PMBR (Boot GUID: %s)", buf) < buflen)do { if (!(snprintf(str, buflen, "PMBR (Boot GUID: %s)", buf) < buflen)) { fprintf(stderr, "condition (%s) failed at %s:%d\n" , "snprintf(str, buflen, \"PMBR (Boot GUID: %s)\", buf) < buflen" , "cgpt/cgpt_common.c", 1103); exit(1); } } while (0); |
1104 | } |
1105 | } |
1106 | |
1107 | /* |
1108 | * This is here because some CGPT functionality is provided in libvboot_host.a |
1109 | * for other host utilities. GenerateGuid() is implemented (in cgpt.c which is |
1110 | * *not* linked into libvboot_host.a) by calling into libuuid. We don't want to |
1111 | * mandate libuuid as a dependency for every utilitity that wants to link |
1112 | * libvboot_host.a, since they usually don't use the functionality that needs |
1113 | * to generate new UUIDs anyway (just other functionality implemented in the |
1114 | * same files). |
1115 | */ |
1116 | #ifndef HAVE_MACOS |
1117 | __attribute__((weak)) int GenerateGuid(Guid *newguid) { return CGPT_FAILED; }; |
1118 | #endif |